Chapter 14: Lines and Angles Exercise - 14.1

Question: 1
Write down each pair of adjacent angles shown in Figure

Solution:

The angles that have common vertex and a common arm are known as adjacent angles
The adjacent angles are:
$\angle D O C$ and $\angle B O C$
$\angle \mathrm{COB}$ and $\angle \mathrm{BOA}$

Question: 2

In figure, name all the pairs of adjacent angles.

(6)

Solution:

In fig (i), the adjacent angles are
$\angle E B A$ and $\angle A B C$
$\angle A C B$ and $\angle B C F$
$\angle B A C$ and $\angle C A D$
In fig (ii), the adjacent angles are
$\angle B A D$ and $\angle D A C$
$\angle B D A$ and $\angle C D A$

Question: 3
In fig, write down
(i) each linear pair

Solution:

(i) The two adjacent angles are said to form a linear pair of angles if their non - common arms are two opposite rays.
$\angle 1$ and $\angle 3$
$\angle 1$ and $\angle 2$
$\angle 4$ and $\angle 3$
$\angle 4$ and $\angle 2$
$\angle 5$ and $\angle 6$
$\angle 5$ and $\angle 7$
$\angle 6$ and $\angle 8$
$\angle 7$ and $\angle 8$
(ii) The two angles formed by two intersecting lines and have no common arms are called vertically opposite angles.
$\angle 1$ and $\angle 4$
$\angle 2$ and $\angle 3$
$\angle 5$ and $\angle 8$
$\angle 6$ and $\angle 7$

Question: 4

Are the angles 1 and 2 in figure adjacent angles?

Solution:

No, because they do not have common vertex.

Question: 5
Find the complement of each of the following angles:
(iii) 45°
(iv) 85°

Solution:

The two angles are said to be complementary angles if the sum of those angles is 90°
Complementary angles for the following angles are:
(i) $90^{\circ}-35^{\circ}=55^{\circ}$
(ii) $90^{\circ}-72^{\circ}=18^{\circ}$
(iii) $90^{\circ}-45^{\circ}=45^{\circ}$
(iv) $90^{\circ}-85^{\circ}=5^{\circ}$

Question: 6

Find the supplement of each of the following angles:
(i) 70°
(ii) 120°
(iii) 135°
(iv) 90°

Solution:

The two angles are said to be supplementary angles if the sum of those angles is 180°
(i) $180^{\circ}-70^{\circ}=110^{\circ}$
(ii) $180^{\circ}-120^{\circ}=60^{\circ}$
(iii) $180^{\circ}-135^{\circ}=45^{\circ}$
(iv) $180^{\circ}-90^{\circ}=90^{\circ}$

Question: 7

Identify the complementary and supplementary pairs of angles from the following pairs
(i) $25^{\circ}, 65^{\circ}$
(ii) $120^{\circ}, 60^{\circ}$
(iii) $63^{\circ}, 27^{\circ}$
(iv) $100^{\circ}, 80^{\circ}$

Solution:

(i) $25^{\circ}+65^{\circ}=90^{\circ}$ so, this is a complementary pair of angle.
(ii) $120^{\circ}+60^{\circ}=180^{\circ}$ so, this is a supplementary pair of angle.
(iii) $63^{\circ}+27^{\circ}=90^{\circ}$ so, this is a complementary pair of angle.
(iv) $100^{\circ}+80^{\circ}=180^{\circ}$ so, this is a supplementary pair of angle.

Here, (i) and (iii) are complementary pair of angles and (ii) and (iv) are supplementary pair of angles.

Question: 8

Can two obtuse angles be supplementary, if both of them be
(i) obtuse?
(ii) right?
(iii) acute?

Solution:

Because, the sum of two angles is greater than 90 degrees so their sum will be greater than 180degrees.
(ii) Yes, two right angles can be supplementary

Because, $90^{\circ}+90^{\circ}=180^{\circ}$
(iii) No, two acute angle cannot be supplementary

Because, the sum of two angles is less than 90 degrees so their sum will also be less tha 90 degrees.

Question: 9

Name the four pairs of supplementary angles shown in Fig.

Solution:

The supplementary angles are
$\angle \mathrm{AOC}$ and $\angle \mathrm{COB}$
$\angle B O C$ and $\angle D O B$
$\angle \mathrm{BOD}$ and $\angle \mathrm{DOA}$
$\angle \mathrm{AOC}$ and $\angle \mathrm{DOA}$

Question: 10

In Figure, A, B, C are collinear points and $\angle D B A=\angle E B A$.
(i) Name two linear pairs.
(ii) Name two pairs of supplementary angles.

Solution:

(i) Linear pairs
$\angle \mathrm{ABD}$ and $\angle \mathrm{DBC}$
$\angle A B E$ and $\angle E B C$
Because every linear pair forms supplementary angles, these angles are
$\angle \mathrm{ABD}$ and $\angle \mathrm{DBC}$

Question: 11

If two supplementary angles have equal measure, what is the measure of each angle?

Solution:

Let p and q be the two supplementary angles that are equal
$\angle p=\angle q$
So,
$\angle p+\angle q=180^{\circ}$
$=\angle \mathrm{p}+\angle \mathrm{p}=180^{\circ}$
$=>2 \angle p=180^{\circ}$
$\Rightarrow \angle p=180^{\circ} / 2$
$\Rightarrow \angle p=90^{\circ}$
Therefore, $\angle \mathrm{p}=\angle \mathrm{q}=90^{\circ}$

Question: 12

If the complement of an angle is 28°, then find the supplement of the angle.

Solution:

Here, let p be the complement of the given angle 28°
Therefore, $\angle \mathrm{p}+28^{\circ}=90^{\circ}$
$\Rightarrow \angle \mathrm{p}=90^{\circ}-28^{\circ}$
$=62^{\circ}$
So, the supplement of the angle $=180^{\circ}-62^{\circ}$
$=118^{\circ}$

Question: 13

In Figure, name each linear pair and each pair of vertically opposite angles.

Solution:

Two adjacent angles are said to be linear pair of angles, if their non-common arms are two opposite rays.
$\angle 1$ and $\angle 2$
$\angle 2$ and $\angle 3$
$\angle 3$ and $\angle 4$
$\angle 1$ and $\angle 4$
$\angle 5$ and $\angle 6$
$\angle 8$ and $\angle 5$
$\angle 9$ and $\angle 10$
$\angle 10$ and $\angle 11$
$\angle 11$ and $\angle 12$
$\angle 12$ and $\angle 9$
The two angles are said to be vertically opposite angles if the two intersecting lines have no common arms.
$\angle 1$ and $\angle 3$
$\angle 4$ and $\angle 2$
$\angle 5$ and $\angle 7$
$\angle 6$ and $\angle 8$
$\angle 9$ and $\angle 11$
$\angle 10$ and $\angle 12$

Question: 14

In Figure, OE is the bisector of $\angle \mathrm{BOD}$. If $\angle 1=70^{\circ}$, Find the magnitude of $\angle 2, \angle 3, \angle 4$

Solution:

Given,
$\angle 1=70^{\circ}$
$\angle 3=2(\angle 1)$
$=2\left(70^{\circ}\right)$
$=140^{\circ}$
$\angle 3=\angle 4$
As, OE is the angle bisector,
$\angle \mathrm{DOB}=2(\angle 1)$
$=2\left(70^{\circ}\right)$
$=140^{\circ}$
$\angle \mathrm{DOB}+\angle \mathrm{AOC}+\angle \mathrm{COB}+\angle \mathrm{DOB}=360^{\circ}$
$=>140^{\circ}+140^{\circ}+2(\angle C O B)=360^{\circ}$
Since, $\angle C O B=\angle A O D$
$=>2(\angle C O B)=360^{\circ}-280^{\circ}$
$=>2(\angle C O B)=80^{\circ}$
$=>\angle C O B=80^{\circ} / 2$
$=>\angle O B=40^{\circ}$
Therefore, $\angle \mathrm{COB}=\angle \mathrm{AOB}=40^{\circ}$
The angles are,
$\angle 1=70^{\circ}$,
$\angle 2=40^{\circ}$,
$\angle 3=140^{\circ}$,
$\angle 4=40^{\circ}$

Question: 15

One of the angles forming a linear pair is a right angle. What can you say about its other angle?

Solution:

One of the Angle of a linear pair is the right angle $\left(90^{\circ}\right)$
Therefore, the other angle is
$\Rightarrow 180^{\circ}-90^{\circ}=90^{\circ}$

Question: 16

One of the angles forming a linear pair is an obtuse angle. What kind of angle is the other?

Solution:

One of the Angles of a linear pair is obtuse, then the other angle should be acute, only then their sum will be 180°.

Question: 17

One of the angles forming a linear pair is an acute angle. What kind of angle is the other?

Solution:

One of the Angles of a linear pair is acute, then the other angle should be obtuse, only then their sum will be 180°.

Question: 18

Can two acute angles form a linear pair?

Solution:

No, two acute angles cannot form a linear pair because their sum is always less than 180°.

Question: 19

If the supplement of an angle is 65°, then find its complement.

Solution:

Let x be the required angle
So,
$=>x+65^{\circ}=180^{\circ}$
$\Rightarrow x=180^{\circ}-65^{\circ}$
$=115^{\circ}$
But the complement of the angle cannot be determined.

Question: 20

Solution:

(i) Since, $\angle B O A+\angle B O C=180^{\circ}$

Linear pair:
$=6^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow>x^{\circ}=180^{\circ}-60^{\circ}$
$\Rightarrow x^{\circ}=120^{\circ}$
(ii) Linear pair:
$=>3 x^{\circ}+2 x^{\circ}=180^{\circ}$
$\Rightarrow 5 x^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=180^{\circ} / 5$
$\Rightarrow x^{\circ}=36^{\circ}$
(iii) Linear pair,

Since, $35^{\circ}+x^{\circ}+60^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=180^{\circ}-35^{\circ}-60^{\circ}$
$\Rightarrow x^{\circ}=180^{\circ}-95^{\circ}$
$\Rightarrow x^{\circ}=85^{\circ}$
(iv) Linear pair,
$83^{\circ}+92^{\circ}+47^{\circ}+75^{\circ}+x^{\circ}=360^{\circ}$
$=>x^{\circ}+297^{\circ}=360^{\circ}$
$\Rightarrow x^{\circ}=360^{\circ}-297^{\circ}$
$\Rightarrow x^{\circ}=63^{\circ}$
(v) Linear pair,
$3 x^{\circ}+2 x^{\circ}+x^{\circ}+2 x^{\circ}=360^{\circ}$
$\Rightarrow 8 x^{\circ}=360^{\circ}$
$\Rightarrow x^{\circ}=360^{\circ} / 8$
$\Rightarrow x^{\circ}=45^{\circ}$
(vi) Linear pair:
$3 x^{\circ}=105^{\circ}$
$\Rightarrow x^{\circ}=105^{\circ} / 3$
$=>x^{\circ}=45^{\circ}$

Question:

In Fig. 22, it being given that $\angle 1=65^{\circ}$, find all the other angles.

Fig. 22

Solution:

Given,
$\angle 1=\angle 3$ are the vertically opposite angles
Therefore, $\angle 3=65^{\circ}$
Here, $\angle 1+\angle 2=180^{\circ}$ are the linear pair
Therefore, $\angle 2=180^{\circ}-65^{\circ}$
$=115^{\circ}$
$\angle 2=\angle 4$ are the vertically opposite angles
Therefore, $\angle 2=\angle 4=115^{\circ}$
And $\angle 3=65^{\circ}$

Question: 22

In Fig. 23 OA and $O B$ are the opposite rays:
(i) If $x=25^{\circ}$, what is the value of y ?
(ii) If $y=35^{\circ}$, what is the value of x ?

Fig. 23

Solution:

$$
\begin{aligned}
& \angle A O C+\angle B O C=180^{\circ}-\text { Linear pair } \\
& \Rightarrow 2 y+5+3 x=180^{\circ} \\
& \Rightarrow 3 x+2 y=175^{\circ} \\
& \text { (i) If } x=25^{\circ} \text {, then } \\
& \Rightarrow 3\left(25^{\circ}\right)+2 y=175^{\circ} \\
& \Rightarrow 75^{\circ}+2 y=175^{\circ} \\
& \Rightarrow 2 y=175^{\circ}-75^{\circ} \\
& \Rightarrow 2 y=100^{\circ} \\
& \Rightarrow y=100^{\circ} / 2 \\
& \Rightarrow y=50^{\circ}
\end{aligned}
$$

(ii) If $y=35^{\circ}$, then
$3 x+2\left(35^{\circ}\right)=175^{\circ}$
$=>3 x+70^{\circ}=175^{\circ}$
$\Rightarrow 3 x=175^{\circ}-70^{\circ}$
$\Rightarrow 3 x=105^{\circ}$
$\Rightarrow>=105^{\circ} / 3$
$\Rightarrow x=35^{\circ}$

Question: 24

In Figure, write all pairs of adjacent angles and all the linear pairs.

Solution:

Pairs of adjacent angles are:
$\angle \mathrm{DOA}$ and $\angle \mathrm{DOC}$
$\angle B O C$ and $\angle C O D$
$\angle A O D$ and $\angle B O D$
$\angle \mathrm{AOC}$ and $\angle B O C$
Linear pairs:
$\angle A O D$ and $\angle B O D$
$\angle A O C$ and $\angle B O C$

Question: 25
In Figure, find $\angle x$. Further find $\angle B O C, \angle C O D, \angle A O D$

Solution:

$(x+10)^{\circ}+x^{\circ}+(x+20)^{\circ}=180^{\circ}$
$=>3 x^{\circ}+30^{\circ}=180^{\circ}$
$=>3 x^{\circ}=180^{\circ}-30^{\circ}$
$=>3 x^{\circ}=150^{\circ}$
$\Rightarrow x^{\circ}=150^{\circ} / 3$
$\Rightarrow x^{\circ}=50^{\circ}$
Here,
$\angle B O C=(x+20)^{\circ}$
$=(50+20)^{\circ}$
$=70^{\circ}$
$\angle \mathrm{COD}=50^{\circ}$
$\angle \mathrm{AOD}=(\mathrm{x}+10)^{\circ}$
$=(50+10)^{\circ}$
$=60^{\circ}$

Question: 25
How many pairs of adjacent angles are formed when two lines intersect in a point?

Solution:

If the two lines intersect at a point, then four adjacent pairs are formed and those are linear.

Question: 26

How many pairs of adjacent angles, in all, can you name in Figure?

Solution:

There are 10 adjacent pairs
$\angle E O D$ and $\angle D O C$
$\angle C O D$ and $\angle B O C$
$\angle \mathrm{COB}$ and $\angle \mathrm{BOA}$
$\angle A O B$ and $\angle B O D$
$\angle B O C$ and $\angle \mathrm{COE}$
$\angle C O D$ and $\angle C O A$
$\angle D O E$ and $\angle D O B$
$\angle E O D$ and $\angle D O A$
$\angle E O C$ and $\angle A O C$
$\angle A O B$ and $\angle B O E$

Question: 27
In Figure, determine the value of x.

Solution:

Linear pair:
$\angle C O B+\angle A O B=180^{\circ}$
$=>3 x^{\circ}+3 x^{\circ}=180^{\circ}$
$\Rightarrow 6 x^{\circ}=180^{\circ}$
$=>x^{\circ}=180^{\circ} / 6$

Question: 28

In Figure, $A O C$ is a line, find x.

Solution:

$\angle A O B+\angle B O C=180^{\circ}$
Linear pair
$=>2 x+70^{\circ}=180^{\circ}$
$\Rightarrow 2 x=180^{\circ}-70^{\circ}$
$\Rightarrow 2 x=110^{\circ}$
$\Rightarrow x=110^{\circ} / 2$
$\Rightarrow \mathrm{x}=55^{\circ}$

Question: 29

In Figure, POS is a line, find x.

Solution:

Angles of a straight line,
$\angle \mathrm{QOP}+\angle \mathrm{QOR}+\angle \mathrm{ROS}=108^{\circ}$
$=>60^{\circ}+4 x+40^{\circ}=180^{\circ}$
$\Rightarrow 100^{\circ}+4 x=180^{\circ}$
$\Rightarrow 4 x=180^{\circ}-100^{\circ}$
$\Rightarrow 4 x=80^{\circ}$
=> $x=80^{\circ} / 4$
$\Rightarrow \mathrm{x}=20^{\circ}$

Question: 30

In Figure, lines I_{1} and I_{2} intersect at O, forming angles as shown in the figure. If $x=45^{\circ}$, find the values of y, z and u.

Solution:

Given that,
$\angle x=45^{\circ}$
$\angle x=\angle z=45^{\circ}$
$\angle y=\angle u$
$\angle x+\angle y+\angle z+\angle u=360^{\circ}$
$=>45^{\circ}+45^{\circ}+\angle y+\angle u=360^{\circ}$
$=>90^{\circ}+\angle y+\angle u=360^{\circ}$
$\Rightarrow \angle y+\angle u=360^{\circ}-90^{\circ}$
$\Rightarrow \angle y+\angle u=270^{\circ}$
$=>\angle y+\angle z=270^{\circ}$
$=>2 \angle z=270^{\circ}$
$\Rightarrow \angle z=135^{\circ}$
Therefore, $\angle y=\angle u=135^{\circ}$
So, $\angle x=45^{\circ}$,
$\angle y=135^{\circ}$,
$\angle \mathrm{z}=45^{\circ}$,
$\angle u=135^{\circ}$

Question: 31

In Figure, three coplanar lines intersect at a point O, forming angles as shown in the figure.
Find the values of x, y, z and u

Solution:

Given that,
$\angle \mathrm{x}+\angle \mathrm{y}+\angle \mathrm{z}+\angle \mathrm{u}+50^{\circ}+90^{\circ}=360^{\circ}$
Linear pair,
$\angle x+50^{\circ}+90^{\circ}=180^{\circ}$
$=\angle x+140^{\circ}=180^{\circ}$
$=\angle x=180^{\circ}-140^{\circ}$
$\Rightarrow \angle x=40^{\circ}$
$\angle \mathrm{x}=\angle \mathrm{u}=40^{\circ}$ are vertically opposite angles
$=>\angle z=90^{\circ}$ is a vertically opposite angle
$=>\angle y=50^{\circ}$ is a vertically opposite angle
Therefore, $\angle x=40^{\circ}$,
$\angle y=50^{\circ}$,
$\angle z=90^{\circ}$,
$\angle u=40^{\circ}$

Question: 32

In Figure, find the values of x, y and z

Solution:

$\angle y=25^{\circ}$ vertically opposite angle
$\angle x=\angle y$ are vertically opposite angles
$\angle \mathrm{x}+\angle \mathrm{y}+\angle \mathrm{z}+25^{\circ}=360^{\circ}$
$=>\angle x+\angle z+25^{\circ}+25^{\circ}=360^{\circ}$
$=>\angle x+\angle z+50^{\circ}=360^{\circ}$
$=>\angle x+\angle Z=360^{\circ}-50^{\circ}$
$=>2 \angle x=310^{\circ}$
$\Rightarrow \angle x=155^{\circ}$
And, $\angle x=\angle z=155^{\circ}$
Therefore, $\angle x=155^{\circ}$,
$\angle y=25^{\circ}$,
$\angle z=155^{\circ}$

Chapter 14: Lines and Angles Exercise - 14.2

Question: 1

In Figure, line n is a transversal to line I and m . Identify the following:

ต

ω

$[4$
(i) Alternate and corresponding angles in Figure.(i)
(ii) Angles alternate to $\angle \mathrm{d}$ and $\angle \mathrm{g}$ and angles corresponding to $\angle \mathrm{RQF}$ and angle alternate to $\angle P Q E$ in Figure. (ii)
(iii) Angle alternate to $\angle P Q R$, angle corresponding to $\angle R Q F$ and angle alternate to $\angle P Q E$ in Figure. (iii)
(iv) Pairs of interior and exterior angles on the same side of the transversal in Figure. (iii)

Solution:

(i) Figure (i)

Corresponding angles:
$\angle E G B$ and $\angle G H D$
$\angle \mathrm{HGB}$ and $\angle \mathrm{FHD}$
$\angle E G A$ and $\angle G H C$
$\angle \mathrm{AGH}$ and $\angle \mathrm{CHF}$
The alternate angles are:
$\angle E G B$ and $\angle C H F$
$\angle \mathrm{HGB}$ and $\angle \mathrm{CHG}$
$\angle E G A$ and $\angle F H D$
$\angle A G H$ and \angle GHD
(ii) Figure (ii)

The alternate angle to $\angle \mathrm{d}$ is $\angle \mathrm{e}$.
The alternate angle to $\angle \mathrm{g}$ is $\angle \mathrm{b}$.
The corresponding angle to $\angle \mathrm{f}$ is $\angle \mathrm{c}$.
The corresponding angle to $\angle \mathrm{h}$ is $\angle \mathrm{a}$.
(iii) Figure (iii)

Angle alternate to $\angle P Q R$ is $\angle Q R A$.
Angle corresponding to $\angle R Q F$ is $\angle A R B$.
Angle alternate to $\angle \mathrm{POE}$ is $\angle \mathrm{ARB}$.
(iv) Figure (ii)

Pair of interior angles are
$\angle \mathrm{a}$ is $\angle \mathrm{e}$.
$\angle d$ is $\angle f$.
Pair of exterior angles are
$\angle \mathrm{b}$ is $\angle \mathrm{h}$.
$\angle \mathrm{C}$ is $\angle \mathrm{g}$.

Question: 2

In Figure, $A B$ and $C D$ are parallel lines intersected by a transversal $P Q$ at L and M respectively, If $\angle \mathrm{CMQ}=60^{\circ}$, find all other angles in the figure.

Solution:

Corresponding angles:
$\angle \mathrm{ALM}=\angle \mathrm{CMQ}=60^{\circ}$
Vertically opposite angles:
$\angle \mathrm{LMD}=\angle \mathrm{CMQ}=60^{\circ}$
Vertically opposite angles:
$\angle \mathrm{ALM}=\angle \mathrm{PLB}=60^{\circ}$
Here,
$\angle \mathrm{CMQ}+\angle \mathrm{QMD}=180^{\circ}$ are the linear pair
$=\angle \mathrm{QMD}=180^{\circ}-60^{\circ}$
$=120^{\circ}$
Corresponding angles:
$\angle \mathrm{QMD}=\angle \mathrm{MLB}=120^{\circ}$
Vertically opposite angles
$\angle \mathrm{QMD}=\angle \mathrm{CML}=120^{\circ}$
Vertically opposite angles
$\angle \mathrm{MLB}=\angle \mathrm{ALP}=120^{\circ}$

Question: 3

In Figure, $A B$ and $C D$ are parallel lines intersected by a transversal by a transversal $P Q$ at L and M respectively. If $\angle \mathrm{LMD}=35^{\circ}$ find $\angle \mathrm{ALM}$ and $\angle \mathrm{PLA}$.

Solution:

Given that,
$\angle \mathrm{LMD}=35^{\circ}$
$\angle \mathrm{LMD}$ and $\angle \mathrm{LMC}$ is a linear pair
$\angle \mathrm{LMD}+\angle \mathrm{LMC}=180^{\circ}$
$=\angle \mathrm{LMC}=180^{\circ}-35^{\circ}$
$=145^{\circ}$
So, $\angle \mathrm{LMC}=\angle \mathrm{PLA}=145^{\circ}$
And, $\angle \mathrm{LMC}=\angle \mathrm{MLB}=145^{\circ}$
$\angle \mathrm{MLB}$ and $\angle \mathrm{ALM}$ is a linear pair
$\angle \mathrm{MLB}+\angle \mathrm{ALM}=180^{\circ}$
$=\angle \mathrm{ALM}=180^{\circ}-145^{\circ}$
$=\angle \mathrm{ALM}=35^{\circ}$
Therefore, $\angle \mathrm{ALM}=35^{\circ}, \angle \mathrm{PLA}=145^{\circ}$.

Question: 4

The line n is transversal to line I and m in Figure. Identify the angle alternate to $\angle 13$, angle corresponding to $\angle 15$, and angle alternate to $\angle 15$.

Solution:

Given that, I\| m
So,
The angle alternate to $\angle 13$ is $\angle 7$
The angle corresponding to $\angle 15$ is $\angle 7$
The angle alternate to $\angle 15$ is $\angle 5$

Question: 5

In Figure, line I\| m and n is transversal. If $\angle 1=40^{\circ}$, find all the angles and check that all corresponding angles and alternate angles are equal.

Solution:

Given that,
$\angle 1=40^{\circ}$
$\angle 1$ and $\angle 2$ is a linear pair
$=\angle 1+\angle 2=180^{\circ}$
$=\angle 2=180^{\circ}-40^{\circ}$
$=\angle 2=140^{\circ}$
$\angle 2$ and $\angle 6$ is a corresponding angle pair
So, $\angle 6=140^{\circ}$
$\angle 6$ and $\angle 5$ is a linear pair
$=\angle 6+\angle 5=180^{\circ}$
$=\angle 5=180^{\circ}-140^{\circ}$
$=\angle 5=40^{\circ}$
$\angle 3$ and $\angle 5$ are alternative interior angles
So, $\angle 5=\angle 3=40^{\circ}$
$\angle 3$ and $\angle 4$ is a linear pair
$=\angle 3+\angle 4=180^{\circ}$
$=\angle 4=180^{\circ}-40^{\circ}$
$=\angle 4=140^{\circ}$
$\angle 4$ and $\angle 6$ are a pair interior angles
So, $\angle 4=\angle 6=140^{\circ}$
$\angle 3$ and $\angle 7$ are pair of corresponding angles
So, $\angle 3=\angle 7=40^{\circ}$
Therefore, $\angle 7=40^{\circ}$
$\angle 4$ and $\angle 8$ are a pair corresponding angles
So, $\angle 4=\angle 8=140^{\circ}$
Therefore, $\angle 8=140^{\circ}$

Question: 6

In Figure, line I \| m and a transversal n cuts them P and Q respectively. If $\angle 1=75^{\circ}$, find all other angles.

Solution:

Given that, III m and $\angle 1=75$ 。
We know that,
$\angle 1+\angle 2=180^{\circ} \rightarrow$ (linear pair)
$=\angle 2=180^{\circ}-75^{\circ}$
$=\angle 2=105^{\circ}$
here, $\angle 1=\angle 5=75^{\circ}$ are corresponding angles
$\angle 5=\angle 7=75^{\circ}$ are vertically opposite angles.
$\angle 2=\angle 6=105^{\circ}$ are corresponding angles
$\angle 6=\angle 8=105^{\circ}$ are vertically opposite angles
$\angle 2=\angle 4=105^{\circ}$ are vertically opposite angles
So, $\angle 1=75^{\circ}, \angle 2=105^{\circ}, \angle 3=75^{\circ}, \angle 4=105^{\circ}, \angle 5=75^{\circ}, \angle 6=105^{\circ}, \angle 7=75^{\circ}, \angle 8=105^{\circ}$

Question: 7

In Figure, $A B \| C D$ and a transversal $P Q$ cuts at L and M respectively. If $\angle Q M D=100^{\circ}$, find all the other angles.

Solution:

Given that, $\mathrm{AB} \| \mathrm{CD}$ and $\angle \mathrm{QMD}=100^{\circ}$
We know that,
Linear pair,
$\angle \mathrm{QMD}+\angle \mathrm{QMC}=180^{\circ}$
$=\angle \mathrm{QMC}=180^{\circ}-\angle \mathrm{QMD}$
$=\angle Q M C=180^{\circ}-100^{\circ}$
$=\angle \mathrm{QMC}=80^{\circ}$
Corresponding angles,
$\angle \mathrm{DMQ}=\angle \mathrm{BLM}=100^{\circ}$
$\angle \mathrm{CMQ}=\angle \mathrm{ALM}=80^{\circ}$
Vertically Opposite angles,
$\angle \mathrm{DMQ}=\angle \mathrm{CML}=100^{\circ}$
$\angle \mathrm{BLM}=\angle \mathrm{PLA}=100^{\circ}$
$\angle \mathrm{CMQ}=\angle \mathrm{DML}=80^{\circ}$
$\angle \mathrm{ALM}=\angle \mathrm{PLB}=80^{\circ}$

Question: 8

In Figure, I \| m and p || q. Find the values of x, y, z, t.

Solution:

Give that, angle is 80°
$\angle z$ and 80° are vertically opposite angles
$=\angle \mathrm{Z}=80^{\circ}$
$\angle z$ and $\angle t$ are corresponding angles
$=\angle Z=\angle t$
Therefore, $\angle \mathrm{t}=80^{\circ}$
$\angle \mathrm{z}$ and $\angle \mathrm{y}$ are corresponding angles
$=\angle z=\angle y$
Therefore, $\angle \mathrm{y}=80^{\circ}$
$\angle x$ and $\angle y$ are corresponding angles
$=\angle y=\angle x$
Therefore, $\angle x=80^{\circ}$

Question: 9

In Figure, line $1 \| m, \angle 1=120^{\circ}$ and $\angle 2=100^{\circ}$, find out $\angle 3$ and $\angle 4$.

Solution:

Given that, $\angle 1=120^{\circ}$ and $\angle 2=100^{\circ}$
$\angle 1$ and $\angle 5$ a linear pair
$=\angle 1+\angle 5=180^{\circ}$
$=\angle 5=180^{\circ}-120^{\circ}$
$=\angle 5=60^{\circ}$
Therefore, $\angle 5=60^{\circ}$
$\angle 2$ and $\angle 6$ are corresponding angles
$=\angle 2=\angle 6=100^{\circ}$
Therefore, $\angle 6=100^{\circ}$
$\angle 6$ and $\angle 3$ a linear pair
$=\angle 6+\angle 3=180^{\circ}$
$=\angle 3=180^{\circ}-100^{\circ}$
$=\angle 3=80^{\circ}$
Therefore, $\angle 3=80^{\circ}$
By, angles of sum property
$=\angle 3+\angle 5+\angle 4=180^{\circ}$
$=\angle 4=180^{\circ}-80^{\circ}-60^{\circ}$
$=\angle 4=40^{\circ}$

Question: 10

In Figure, I \| m. Find the values of a, b, c, d. Give reasons.

Solution:

Given that, I || m
Vertically opposite angles,
$\angle a=110^{\circ}$
Corresponding angles,
$\angle \mathrm{a}=\angle \mathrm{b}$
Therefore, $\angle \mathrm{b}=110^{\circ}$
Vertically opposite angle,
$\angle d=85^{\circ}$
Corresponding angles,
$\angle \mathrm{d}=\angle \mathrm{C}$
Therefore, $\angle \mathrm{C}=85^{\circ}$
Hence, $\angle \mathrm{a}=110^{\circ}, \angle \mathrm{b}=110^{\circ}, \angle \mathrm{c}=85^{\circ}, \angle \mathrm{d}=85^{\circ}$

Question: 11

In Figure, $A B \| C D$ and $\angle 1$ and $\angle 2$ are in the ratio of 3: 2 . Determine all angles from 1 to 8 .

Solution:

Given that,
$\angle 1$ and $\angle 2$ are 3: 2
Let us take the angles as $3 \mathrm{x}, 2 \mathrm{x}$
$\angle 1$ and $\angle 2$ are linear pair
$=3 \mathrm{x}+2 \mathrm{x}=180^{\circ}$
$=5 x=180^{\circ}$
$=x=180^{\circ} / 5$
$=x=36^{\circ}$
Therefore, $\angle 1=3 x=3(36)=108^{\circ}$
$\angle 2=2 x=2(36)=72^{\circ}$
$\angle 1$ and $\angle 5$ are corresponding angles
$=\angle 1=\angle 5$
Therefore, $\angle 5=108^{\circ}$
$\angle 2$ and $\angle 6$ are corresponding angles
$=\angle 2=\angle 6$
Therefore, $\angle 6=72^{\circ}$
$\angle 4$ and $\angle 6$ are alternate pair of angles
$=\angle 4=\angle 6=72^{\circ}$
Therefore, $\angle 4=72^{\circ}$
$\angle 3$ and $\angle 5$ are alternate pair of angles
$=\angle 3=\angle 5=108^{\circ}$
Therefore, $\angle 5=108^{\circ}$
$\angle 2$ and $\angle 8$ are alternate exterior of angles
$=\angle 2=\angle 8=72^{\circ}$
Therefore, $\angle 8=72^{\circ}$
$\angle 1$ and $\angle 7$ are alternate exterior of angles
$=\angle 1=\angle 7=108^{\circ}$
Therefore, $\angle 7=108^{\circ}$

Question: 12

In Figure, I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively.
Find $\angle 1, \angle 2$ and $\angle 3$.

Solution:

Linear pair,
$=\angle 4+60^{\circ}=180^{\circ}$
$=\angle 4=180^{\circ}-60$ 。
$=\angle 4=120^{\circ}$
$\angle 4$ and $\angle 1$ are corresponding angles
$=\angle 4=\angle 1$
Therefore, $\angle 1=120^{\circ}$
$\angle 1$ and $\angle 2$ are corresponding angles
$=\angle 2=\angle 1$
Therefore, $\angle 2=120^{\circ}$
$\angle 2$ and $\angle 3$ are vertically opposite angles
$=\angle 2=\angle 3$
Therefore, $\angle 3=120^{\circ}$

Question: 13
In Figure, if $\mathrm{I}\|\mathrm{m}\| \mathrm{n}$ and $\angle 1=60^{\circ}$, find $\angle 2$

Given that,
Corresponding angles:
$\angle 1=\angle 3$
$=\angle 1=60^{\circ}$
Therefore, $\angle 3=60^{\circ}$
$\angle 3$ and $\angle 4$ are linear pair
$=\angle 3+\angle 4=180^{\circ}$
$=\angle 4=180^{\circ}-60^{\circ}$
$=\angle 4=120^{\circ}$
$\angle 3$ and $\angle 4$ are alternative interior angles
$=\angle 4=\angle 2$
Therefore, $\angle 2=120^{\circ}$

Question: 14

In Figure, if $A B \| C D$ and $C D \| E F$, find $\angle A C E$

Solution:

Given that,
Sum of the interior angles,
$=\angle C E F+\angle E C D=180^{\circ}$
$=130^{\circ}+\angle \mathrm{ECD}=180^{\circ}$
$=\angle E C D=180^{\circ}-130^{\circ}$
$=\angle E C D=50^{\circ}$
We know that alternate angles are equal
$=\angle B A C=\angle A C D$
$=\angle \mathrm{BAC}=\angle \mathrm{ECD}+\angle \mathrm{ACE}$
$=\angle \mathrm{ACE}=70^{\circ}-50^{\circ}$
$=\angle \mathrm{ACE}=20^{\circ}$
Therefore, $\angle \mathrm{ACE}=20^{\circ}$

Question: 15

Solution:

Given that, $\angle 1=85^{\circ}$
$\angle 1$ and $\angle 3$ are corresponding angles
So, $\angle 1=\angle 3$
$=\angle 3=85^{\circ}$
Sum of the interior angles
$=\angle 3+\angle 2=180^{\circ}$
$=\angle 2=180^{\circ}-85^{\circ}$
$=\angle 2=95^{\circ}$

Question: 16

In Figure, a transversal n cuts two lines 1 and m . If $\angle 1=70^{\circ}$ and $\angle 7=80^{\circ}$, is $1 \| \mathrm{m}$?

Solution:

We know that if the alternate exterior angles of the two lines are equal, then the lines are parallel.

Here, $\angle 1$ and $\angle 7$ are alternate exterior angles, but they are not equal
$=\angle 1 \neq \angle 7 \neq 80^{\circ}$

Question: 17
In Figure, a transversal n cuts two lines I and m such that $\angle 2=65^{\circ}$ and $\angle 8=65^{\circ}$. Are the lines parallel?

Solution:

vertically opposite angels,
$\angle 2=\angle 3=65^{\circ}$
$\angle 8=\angle 6=65^{\circ}$
Therefore, $\angle 3=\angle 6$
Hence, I \| m

Question: 18

In Figure, Show that $A B \| E F$.

Solution:

We know that,
$\angle \mathrm{ACD}=\angle \mathrm{ACE}+\angle \mathrm{ECD}$
$=\angle \mathrm{ACD}=35^{\circ}+22^{\circ}$
$=\angle \mathrm{ACD}=57^{\circ}=\angle \mathrm{BAC}$
Thus, lines BA and CD are intersected by the line AC such that, $\angle A C D=\angle B A C$
So, the alternate angles are equal
Therefore, $A B \| C D-1$
Now,
$\angle \mathrm{ECD}+\angle \mathrm{CEF}=35^{\circ}+45^{\circ}=180^{\circ}$
This, shows that sum of the angles of the interior angles on the same side of the transversal CE is 180 degrees

From eq 1 and 2

We can say that, $A B \| E F$

Question: 19

In Figure, $A B \| C D$. Find the values of x, y, z.

Solution:

Linear pair,
$=\angle x+125^{\circ}=180^{\circ}$
$=\angle x=180^{\circ}-125^{\circ}$
$=\angle X=55^{\circ}$
Corresponding angles
$=\angle z=125^{\circ}$
Adjacent interior angles
$=\angle x+\angle z=180^{\circ}$
$=\angle x+125^{\circ}=180^{\circ}$
$=\angle x=180^{\circ}-125^{\circ}$
$=\angle x=55^{\circ}$
Adjacent interior angles
$=\angle x+\angle y=180^{\circ}$
$=\angle y+55^{\circ}=180^{\circ}$
$=\angle y=180^{\circ}-55^{\circ}$
$=\angle y=125^{\circ}$

Question: 20

In Figure, find out $\angle P X R$, if $P Q \| R S$.

Solution:

We need to find $\angle P X R$
$\angle X R S=50^{\circ}$
$\angle \mathrm{XPR}=70^{\circ}$
Given, that $P Q \| R S$
$\angle \mathrm{PXR}=\angle \mathrm{XRS}+\angle \mathrm{XPR}$
$\angle \mathrm{PXR}=50^{\circ}+70^{\circ}$
$\angle \mathrm{PXR}=120^{\circ}$
Therefore, $\angle \mathrm{PXR}=120^{\circ}$

Question: 21

In Figure, we have
(i) $\angle \mathrm{MLY}=2 \angle \mathrm{LMQ}$
(ii) $\angle \mathrm{XLM}=(2 \mathrm{x}-10)^{\circ}$ and $\angle \mathrm{LMQ}=(\mathrm{x}+30)^{\circ}$, find x .
(iii) $\angle \mathrm{XLM}=\angle \mathrm{PML}$, find $\angle \mathrm{ALY}$
(iv) $\angle A L Y=(2 x-15)^{\circ}, \angle L M Q=(x+40)^{\circ}$, find x.

Solution:

(i) $\angle \mathrm{MLY}$ and $\angle \mathrm{LMQ}$ are interior angles
$=\angle \mathrm{MLY}+\angle \mathrm{LMQ}=180^{\circ}$
$=2 \angle \mathrm{LMQ}+\angle \mathrm{LMQ}=180^{\circ}$
$=3 \angle \mathrm{LMQ}=180^{\circ}$
$=\angle \mathrm{LMQ}=180^{\circ} / 3$
$=\angle \mathrm{LMQ}=60^{\circ}$
(ii) $\angle \mathrm{XLM}=(2 \mathrm{x}-10)^{\circ}$ and $\angle \mathrm{LMQ}=(\mathrm{x}+30)^{\circ}$, find x .
$\angle \mathrm{XLM}=(2 \mathrm{x}-10)^{\circ}$ and $\angle \mathrm{LMQ}=(\mathrm{x}+30)^{\circ}$
$\angle \mathrm{XLM}$ and $\angle \mathrm{LMQ}$ are alternate interior angles
$=\angle X L M=\angle L M Q$
$=(2 x-10)^{\circ}=(x+30)^{\circ}$
$=2 x-x=30^{\circ}+10^{\circ}$
$=x=40^{\circ}$
Therefore, $\mathrm{x}=40^{\circ}$
(iii) $\angle \mathrm{XLM}=\angle \mathrm{PML}$, find $\angle \mathrm{ALY}$
$\angle X L M=\angle P M L$
Sum of interior angles is 180 degrees
$=\angle \mathrm{XLM}+\angle \mathrm{PML}=180^{\circ}$
$=\angle X L M+\angle X L M=180^{\circ}$
$=2 \angle \mathrm{XLM}=180^{\circ}$
$=\angle X L M=180^{\circ} / 2$
$=\angle \mathrm{XLM}=90^{\circ}$
$\angle X L M$ and $\angle A L Y$ are vertically opposite angles
Therefore, $\angle \mathrm{ALY}=90^{\circ}$
(iv) $\angle A L Y=(2 x-15)^{\circ}, \angle L M Q=(x+40)^{\circ}$, find x.
$\angle A L Y$ and $\angle L M Q$ are corresponding angles
$=\angle \mathrm{ALY}=\angle \mathrm{LMQ}$
$=(2 x-15)^{\circ}=(x+40)^{\circ}$
$=2 x-x=40^{\circ}+15^{\circ}$
$=x=55^{\circ}$
Therefore, $x=55^{\circ}$

Question: 22

In Figure, $D E \| B C$. Find the values of x and y.

Solution:

We know that,
$A B C, D A B$ are alternate interior angles
$\angle \mathrm{ABC}=\angle \mathrm{DAB}$
So, $x=40^{\circ}$

Question: 23

In Figure, line $A C \| l$ line $D E$ and $\angle A B D=32^{\circ}$, Find out the angles x and y if $\angle E=122^{\circ}$.

Solution:

$\angle \mathrm{BDE}=\angle \mathrm{ABD}=32^{\circ}-$ Alternate interior angles
$=\angle B D E+y=180^{\circ}-$ linear pair
$=32^{\circ}+y=180^{\circ}$
$=y=180^{\circ}-32^{\circ}$
$=y=148^{\circ}$
$\angle \mathrm{ABE}=\angle \mathrm{E}=32^{\circ}-$ Alternate interior angles
$=\angle \mathrm{ABD}+\angle \mathrm{DBE}=122^{\circ}$
$=32^{\circ}+x=122^{\circ}$
$=x=122^{\circ}-32^{\circ}$
$=x=90^{\circ}$

Question: 24

In Figure, side $B C$ of $\triangle A B C$ has been produced to D and $C E \| B A$. If $\angle A B C=65^{\circ}, \angle B A C=$ 55°, find $\angle A C E, \angle E C D, \angle A C D$.

Solution:

Corresponding angles,
$\angle \mathrm{ABC}=\angle \mathrm{ECD}=55^{\circ}$
Alternate interior angles,
$\angle B A C=\angle A C E=65^{\circ}$
Now, $\angle \mathrm{ACD}=\angle \mathrm{ACE}+\angle \mathrm{ECD}$
$=\angle \mathrm{ACD}=55^{\circ}+65^{\circ}$
$=120^{\circ}$

Question: 25

In Figure, line $C A \perp A B \|$ line $C R$ and line $P R \|$ line $B D$. Find $\angle x, \angle y, \angle z$.

Solution:

Given that, $C A \perp A B$
$=\angle \mathrm{CAB}=90^{\circ}$
$=\angle \mathrm{AQP}=20^{\circ}$
By, angle of sum property
In \triangle APD
$=\angle \mathrm{CAB}+\angle \mathrm{AQP}+\angle \mathrm{APQ}=180$ 。
$=\angle \mathrm{APQ}=180^{\circ}-90^{\circ}-20^{\circ}$
$=\angle \mathrm{APQ}=70^{\circ}$
y and $\angle \mathrm{APQ}$ are corresponding angles
$=y=\angle A P Q=70^{\circ}$
$\angle \mathrm{APQ}$ and $\angle \mathrm{z}$ are interior angles
$=\angle \mathrm{APQ}+\angle \mathrm{Z}=180^{\circ}$
$=\angle z=180^{\circ}-70^{\circ}$
$=\angle z=110^{\circ}$

Question: 26
In Figure, $P Q \| R S$. Find the value of x.

Solution:

Given,
Linear pair,
$\angle \mathrm{RCD}+\angle \mathrm{RCB}=180^{\circ}$
$=\angle \mathrm{RCB}=180^{\circ}-130^{\circ}$
$=50^{\circ}$
In $\triangle A B C$,
$\angle B A C+\angle A B C+\angle B C A=180^{\circ}$
By, angle sum property
$=\angle B A C=180^{\circ}-55^{\circ}-50^{\circ}$
$=\angle B A C=75^{\circ}$

Question: 27

In Figure, $A B \| C D$ and $A E \| C F, \angle F C G=90^{\circ}$ and $\angle B A C=120^{\circ}$. Find the value of x, y and z.

Solution:

Alternate interior angle
$\angle B A C=\angle A C G=120^{\circ}$
$=\angle \mathrm{ACF}+\angle \mathrm{FCG}=120^{\circ}$
So, $\angle \mathrm{ACF}=120^{\circ}-90^{\circ}$
$=30^{\circ}$

Linear pair,
$\angle \mathrm{DCA}+\angle \mathrm{ACG}=180^{\circ}$
$=\angle x=180^{\circ}-120^{\circ}$
$=60^{\circ}$
$\angle \mathrm{BAC}+\angle \mathrm{BAE}+\angle \mathrm{EAC}=360^{\circ}$
$\angle \mathrm{CAE}=360^{\circ}-120^{\circ}-\left(60^{\circ}+30^{\circ}\right)$
$=150^{\circ}$

Question: 28

In Figure, $A B \| C D$ and $A C \| B D$. Find the values of x, y, z.

Solution:

(i) Since, $A C \| B D$ and $C D \| A B, A B C D$ is a parallelogram

Adjacent angles of parallelogram,
$\angle \mathrm{CAD}+\angle \mathrm{ACD}=180^{\circ}$
$=\angle \mathrm{ACD}=180^{\circ}-65^{\circ}$
$=115^{\circ}$
Opposite angles of parallelogram,
$=\angle \mathrm{CAD}=\angle \mathrm{CDB}=65^{\circ}$
$=\angle \mathrm{ACD}=\angle \mathrm{DBA}=115^{\circ}$
(ii) Here,
$A C \| B D$ and $C D \| A B$
Alternate interior angles,
$\angle D C A=x=40^{\circ}$
$\angle \mathrm{DAB}=\mathrm{y}=35^{\circ}$

Question: 29

In Figure, state which lines are parallel and why?

Solution:

Let, F be the point of intersection of the line $C D$ and the line passing through point E.
Here, $\angle A C D$ and $\angle C D E$ are alternate and equal angles.
So, $\angle \mathrm{ACD}=\angle \mathrm{CDE}=100^{\circ}$
Therefore, $\mathrm{AC} \| E F$

Question: 30

In Figure, the corresponding arms of $\angle A B C$ and $\angle D E F$ are parallel. If $\angle A B C=75^{\circ}$, find $\angle D E F$.

Solution:

Let, G be the point of intersection of the lines $B C$ and $D E$
Since, $A B \| D E$ and $B C \| E F$
The corresponding angles,
$=\angle \mathrm{ABC}=\angle \mathrm{DGC}=\angle \mathrm{DEF}=100^{\circ}$

