## Congruence Exercise 16.1

## Question: 1

Explain the concept of congruence of figures with the help of certain examples

## Solution:

Congruent objects or figures are exact copies of each other or we can say mirror images of each other. The relation of two objects being congruent is called congruence.

Consider Ball A and Ball B . These two balls are congruent.


Bell A


Ball B

Now consider the two stars below. Star A and Star B are exactly the same in size, colour and shape. These are congruent stars.


## Question: 2

Fill in the blanks:
(i) Two line segments are congruent if $\qquad$
(ii) Two angles are congruent if $\qquad$
(iii) Two square are congruent if $\qquad$
(iv) Two rectangles are congruent if $\qquad$
(v) Two circles are congruent if $\qquad$

## Solution:

(i) They have the same length, since they can superpose on each other.
(ii) Their measures are the same. On superposition, we can see that the angles are equal.
(iii) Their sides are equal. All the sides of a square are equal and if two squares have equal sides, then all their sides are of the same length. Also angles of a square are $90^{\circ}$ which is also the same for both the squares.
(iv) Their lengths are equal and their breadths are also equal. The opposite sides of a rectangle are equal. So if two rectangles have lengths of the same size and breadths of the same size, then they are congruent to each other.
(v) Their radii are of the same length. Then the circles will have the same diameter and thus will be congruent to each other.

## Question: 3

In Figure, $\angle \mathrm{POQ} \cong \angle \mathrm{ROS}$, can we say that $\angle \mathrm{POR} \cong \angle \mathrm{QOS}$


## Solution:

We have,

Question: 4
In figure, $\mathrm{a}=\mathrm{b}=\mathrm{c}$, name the angle which is congruent to $\angle \mathrm{AOC}$

## Solution:



We have,
$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COD}$
Therefore, $\angle \mathrm{AOB}=\angle \mathrm{COD}$
Also, $\angle \mathrm{AOB}+\angle \mathrm{BOC}=\angle \mathrm{BOC}+\angle \mathrm{COD}$
$\angle \mathrm{AOC}=\angle \mathrm{BOD}$
Hence, $\angle \mathrm{BOD}$ is congruent to $\angle \mathrm{AOC}$

## Question: 5

Is it correct to say that any two right angles are congruent? Give reasons to justify your answer.

## Solution:

Two right angles are congruent to each other because they both measure 90 degrees.
We know that two angles are congruent if they have the same measure.

## Question: 6

In figure, $\angle \mathrm{AOC} \cong \angle \mathrm{PYR}$ and $\angle \mathrm{BOC} \cong \angle \mathrm{QYR}$. Name the angle which is congruent to $\angle \mathrm{AOB}$.



## Solution:

$\angle \mathrm{AOC} \cong \angle \mathrm{PYR} \ldots$. (i) Also, $\angle \mathrm{BOC} \cong \angle \mathrm{QYR} \mathrm{Now}, \angle \mathrm{AOC}=\angle \mathrm{AOB}+\angle \mathrm{BOC} \angle \mathrm{PYR}=\angle \mathrm{PYQ}+\angle \mathrm{QYR}$ By putting the value of $\angle \mathrm{Ac}$

## Question: 7

Which of the following statements are true and which are false;
(i) All squares are congruent.
(ii) If two squares have equal areas, they are congruent.
(iii) If two rectangles have equal areas, they are congruent.
(iv) If two triangles have equal areas, they are congruent.

## Solution:

(i) False.

All the sides of a square are of equal length.
However, different squares can have sides of different lengths. Hence all squares are not congruent.
(ii) True.

Area of a square $=$ side $x$ side
Therefore, two squares that have the same area will have sides of the same lengths. Hence they will be congruent.
(iii) False Area of a rectangle $=$ length x breadth

Two rectangles can have the same area. However, the lengths of their sides can vary and hence they are not congruent.

Example: Suppose rectangle 1 has sides 8 m and 8 m and area 64 meter square. Rectangle 2 has sides 16 m and 4 $m$ and area 64 meter square. Then rectangle 1 and 2 are not congruent.
(iv) False

Area of a triangle $=12 \times$ base $\times$ height
Two triangles can have the same area but the lengths of their sides can vary and hence they cannot be congruent.

## Congruence Exercise 16.2

## Question: 1

In the following pairs of triangle (Figures), the lengths of the sides are indicated along sides. By applying SSS condition, determine which are congruent. State the result in symbolic.


## Solution:



1) In $\triangle A B C$ and $\triangle D E F$
$\mathrm{AB}=\mathrm{DE}=4.5 \mathrm{~cm}$ (Side)
$B C=E F=6 \mathrm{~cm}$ (Side) and
$A C=D F=4 \mathrm{~cm}$ (Side)
Therefore, by SSS criterion of congruence, $\triangle A B C \cong \triangle D E F$
2) 



In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ADB}$
$A C=A D($ Side $)$
$B C=B D($ Side $)$ and
$A B=A B$ (Side)
Therefore, by SSS criterion of congruence, $\triangle A C B \cong \triangle A D B$
3) In $\triangle A B D$ and $\triangle F E C$,
$A B=F E$ (Side)
AD $=\mathrm{FC}($ Side $)$
$B D=C E($ Side $)$
Therefore, by SSS criterion of congruence, $\triangle \mathrm{ABD} \cong \triangle \mathrm{FEC}$
4) In $\triangle A B O$ and $\triangle D O C$,
$\mathrm{AB}=\mathrm{DC}$ (Side)
$A O=O C$ (Side)
$B O=O D$ (Side)
Therefore, by SSS criterion of congruence, $\triangle \mathrm{ABO} \cong \triangle O D C$

## Question: 2

In figure, $A D=D C$ and $A B=B C$
(i) Is $\triangle A B D \cong \triangle C B D$ ?
(ii) State the three parts of matching pairs you have used to answer (i).


## Solution:

Yes $\triangle A B D=\triangle C B D$ by the SSS criterion. We have used the three conditions in the SSS criterion as follows:
$A D=D C$
$A B=B C$ and
$D B=B D$

## Question: 3

In Figure, $A B=D C$ and $B C=A D$.
(i) Is $\triangle A B C \cong \triangle C D A$ ?
(ii) What congruence condition have you used?
(iii) You have used some fact, not given in the question, what is that?


## Solution:

We have $A B=D C$
$B C=A D$
and $A C=A C$
Therefore by SSS $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$
We have used Side congruence condition with one side common in both the triangles.
Yes, have used the fact that $A C=C A$.

## Question: 4

In $\triangle P Q R \cong \triangle E F D$,
(i) Which side of $\triangle P Q R$ equals $E D$ ?
(ii) Which angle of $\triangle P Q R$ equals angle $E$ ?

## Solution:

$\triangle P Q R \cong \triangle E F D$
(i) Therefore $\mathrm{PR}=\mathrm{ED}$ since the corresponding sides of congruent triangles are equal.
(ii) $\angle \mathrm{QPR}=\angle \mathrm{FED}$ since the corresponding angles of congruent triangles are equal.


## Question: 5

Triangles $A B C$ and $P Q R$ are both isosceles with $A B=A C$ and $P O=P R$ respectively. If also, $A B=P Q$ and $B C=Q R$, are the two triangles congruent? Which condition do you use?

It $\angle B=50^{\circ}$, what is the measure of $\angle R$ ?

## Solution:

We have $A B=A C$ in isosceles $\triangle A B C$
And $P Q=P R$ in isosceles $\triangle P Q R$.
Also, we are given that $A B=P Q$ and $Q R=B C$.
Therefore, $A C=P R(A B=A C, P Q=P R$ and $A B=P Q)$
Hence, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
Now
$\angle \mathrm{ABC}=\angle \mathrm{PQR}$ (Since triangles are congruent)However, $\triangle \mathrm{PQR}$ is isosceles.
Therefore, $\angle \mathrm{PRQ}=\angle \mathrm{PQR}=\angle \mathrm{ABC}=50^{\circ}$

## Question: 6



## Solution:

$\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (c.p.c.t)
$\angle \mathrm{BAD}+\angle \mathrm{CAD}=40^{\circ} / 2 \angle \mathrm{BAD}=40^{\circ}$
$\angle B A D=40^{\circ} / 2=20^{\circ}$
$\angle \mathrm{ABC}+\angle \mathrm{BCA}+\angle \mathrm{BAC}=180^{\circ}$ (Angle sum property)
Since $\triangle A B C$ is an isosceles triangle,
$\angle \mathrm{ABC}=\angle \mathrm{BCA} \angle \mathrm{ABC}+\angle \mathrm{ABC}+40^{\circ}=180^{\circ}$
$2 \angle A B C=180^{\circ}-40^{\circ}=140^{\circ} \angle A B C=140^{\circ} / 2=70^{\circ}$
$\angle \mathrm{DBC}+\angle \mathrm{BCD}+\angle \mathrm{BDC}=180^{\circ}$ (Angle sum property)
Since $\triangle \mathrm{ABC}$ is an isosceles triangle, $\angle \mathrm{DBC}=\angle \mathrm{BCD} \angle \mathrm{DBC}+\angle \mathrm{DBC}+100^{\circ}=180^{\circ}$
$2 \angle \mathrm{DBC}=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle \mathrm{DBC}=80^{\circ} \%=40^{\circ}$
In $\triangle B A D$,
$\angle A B D+\angle B A D+\angle A D B=180^{\circ}$ (Angle sum property)
$30^{\circ}+20^{\circ}+\angle \mathrm{ADB}=180^{\circ}(\angle \mathrm{ADB}=\angle \mathrm{ABC}-\angle \mathrm{DBC}), \angle \mathrm{ADB}=180^{\circ}-20^{\circ}-30^{\circ}$
$\angle \mathrm{ADB}=130^{\circ}$
$\angle \mathrm{ADB}=130^{\circ}$

## Question: 7

$\triangle A B C$ and $\triangle A B D$ are on a common base $A B$, and $A C=B D$ and $B C=A D$ as shown in Figure. Which of the following statements is true?
(i) $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADB}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$


## Solution:

In $\triangle A B C$ and $\triangle B A D$ we have,
$A C=B D$ (given)
$B C=A D$ (given)
and $\mathrm{AB}=\mathrm{BA}$ (common)
Therefore by SSS criterion of congruency, $\triangle A B C \cong \triangle B A D$
There option (iii) is true.

## Question: 8

In Figure, $\triangle A B C$ is isosceles with $A B=A C, D$ is the mid-point of base $B C$.
(i) Is $\triangle A D B \cong \triangle A D C$ ?
(ii) State the three pairs of matching parts you use to arrive at your answer.


## Solution:

We have $A B=A C$.
Also since $D$ is the midpoint of $B C, B D=D C$
Also, AD = DA
Therefore by SSS condition,
$\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
We have used $A B, A C: B D, D C$ AND $A D, D A$

## Question: 9

In figure, $\triangle A B C$ is isosceles with $A B=A C$. State if $\triangle A B C \cong \triangle A C B$. If yes, state three relations that you use to arrive at your answer.


## Solution:

Yes, $\triangle A B C \cong \triangle A C B$ by SSS condition.
Since, $A B C$ is an isosceles triangle, $A B=B C, B C=C B$ and $A C=A B$

## Question: 10

Triangles $A B C$ and $D B C$ have side $B C$ common, $A B=B D$ and $A C=C D$. Are the two triangles congruent? State in symbolic form, which congruence do you use? Does $\angle A B D$ equal $\angle A C D$ ? Why or why not?

## Solution:

Yes,
Given,
$\triangle A B C$ and $\triangle D B C$ have side $B C$ common, $A B=B D$ and $A C=C D$
By SSS criterion of congruency, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$
No, $\angle A B D$ and $\angle A C D$ are not equal because $A B \neq A C$


## Congruence Exercise 16.3

## Question: 1

By applying SAS congruence condition, state which of the following pairs of triangle are congruent. State the result in symbolic form

## Solution:

(i)

(i)

We have $O A=O C$ and $O B=O D$ and
$\angle A O B=\angle C O D$ which are vertically opposite angles. Therefore by SAS condition, $\triangle A O C \cong$ $\triangle B O D$
(ii)

(ii)

We have $B D=D C$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$ and
Therefore, by SAS condition, $\triangle A D B \cong \triangle A D C$.
(iii)

(iii)

We have $A B=D C$
$\angle \mathrm{ABD}=\angle \mathrm{CDB}$ and
Therefore, by SAS condition, $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBD}$


We have $B C=Q R$
$A B C=P Q R=90^{\circ}$
And $A B=P Q$
Therefore, by SAS condition, $\triangle A B C \cong \triangle P Q R$.

## Question: 2

State the condition by which the following pairs of triangles are congruent.

## Solution:

(i)

(i)
$A B=A D$
$B C=C D$ and $A C=C A$
Therefore by SSS condition, $\triangle \mathrm{ABC} \cong \triangle A D C$
(ii)

(ii)
$A C=B D$
$A D=B C$ and $A B=B A$
Therefore, by SSS condition, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ADC}$
(iii)

$A B=A D$
$\angle B A C=\angle D A C$ and
Therefore by $S A S$ condition, $\triangle B A C \cong \triangle B A C$
(iv)

(iv)
$A D=B C$
$\angle \mathrm{DAC}=\angle \mathrm{BCA}$ and
Therefore, by SAS condition, $\triangle A B C \cong \triangle A D C$

## Question: 3

In figure, line segments $A B$ and $C D$ bisect each other at $O$. Which of the following statements is true?
(i) $\triangle \mathrm{AOC} \cong \triangle \mathrm{DOB}$
(ii) $\triangle A O C \cong \triangle B O D$
(iii) $\triangle A O C \cong \triangle O D B$

State the three pairs of matching parts, you have used to arrive at the answer.


## Solution:

We have,
And, $C O=O D$
Also, $\mathrm{AOC}=\mathrm{BOD}$
Therefore, by $S A S$ condition, $\triangle A O C \cong \triangle B O D$

## Question: 4

Line-segments $A B$ and $C D$ bisect each other at $O$. $A C$ and $B D$ are joined forming triangles $A O C$ and BOD. State the three equality relations between the parts of the two triangles that are given or otherwise known. Are the two triangles congruent? State in symbolic form, which congruence condition do you use?

## Solution:

We have $A O=O B$ and $C O=O D$ since $A B$ and $C D$ bisect each other at 0 .
Also $\angle \mathrm{AOC}=\angle \mathrm{BOD}$ since they are opposite angles on the same vertex.
Therefore by SAS congruence condition, $\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}$

## Question: 5

$\triangle A B C$ is isosceles with $A B=A C$. Line segment $A D$ bisects $\angle A$ and meets the base $B C$ in $D$.
(i) Is $\triangle A D B \cong \triangle A D C$ ?
(ii) State the three pairs of matching parts used to answer (i).
(iii) Is it true to say that $\mathrm{BD}=\mathrm{DC}$ ?

## Solution:

(i) We have $A B=A C$ (Given)
$\angle \mathrm{BAD}=\angle \mathrm{CAD}(\mathrm{AD}$ bisects $\angle \mathrm{BAC})$
Therefore by SAS condition of congruence, $\triangle A B D \cong \triangle A C D$
(ii) We have used $\mathrm{AB}, \mathrm{AC} ; \angle \mathrm{BAD}=\angle \mathrm{CAD} ; \mathrm{AD}, \mathrm{DA}$.
(iii) Now, $\triangle A B D \cong \triangle A C D$ therefore by c.p.c.t $B D=D C$.

## Question: 6

In Figure, $A B=A D$ and $\angle B A C=\angle D A C$.
(i) State in symbolic form the congruence of two triangles ABC and ADC that is true.
(ii) Complete each of the following, so as to make it true:
(a) $\angle \mathrm{ABC}=$
(b) $\angle \mathrm{ACD}=$
(c) Line segment AC bisects $\qquad$ and $\qquad$


## Solution:

i) $A B=A D$ (given)
$\angle B A C=\angle D A C$ (given)
AC = CA (common)
Therefore by SAS condition of congruency, $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$
ii) $\angle \mathrm{ABC}=\angle \mathrm{ADC}$ (c.p.c.t)
$\angle A C D=\angle A C B$ (c.p.c.t)

## Question: 7

In figure, $A B|\mid D C$ and $A B=D C$.
(i) Is $\triangle A C D \cong \triangle C A B ?$
(ii) State the three pairs of matching parts used to answer (i).
(iii) Which angle is equal to $\angle \mathrm{CAD}$ ?
(iv) Does it follow from (iii) that $A D|\mid B C$ ?


## Solution:

(i) Yes by SAS condition of congruency, $\triangle D C A \cong \triangle B A C$
(ii) We have used $\mathrm{AB}=\mathrm{DC}, \mathrm{AC}=\mathrm{CA}$ and $\angle \mathrm{DCA}=\angle \mathrm{BAC}$.
(iii) $\angle \mathrm{CAD}=\angle \mathrm{ACB}$ since the two triangles are congruent.
(iv) Yes this follows from $A D / / B C$ as alternate angles are equal. If alternate angles are equal the lines are parallel

## Congruence Exercise 16.4

## Question: 1

Which of the following pairs of triangle are congruent by ASA condition?

## Solution:

i)
(i)


We have,
Since $\angle \mathrm{ABO}=\angle \mathrm{CDO}=45^{\circ}$ and both are alternate angles, $\mathrm{AB} / / \mathrm{DC}, \angle \mathrm{BAO}=\angle \mathrm{DCO}$ (alternate angle, $A B / / C D$ and $A C$ is a transversal line)
$\angle \mathrm{ABO}=\angle \mathrm{CDO}=45^{\circ}$ (given in the figure) Also, $\mathrm{AB}=\mathrm{DC}$ (Given in the figure)
Therefore, by $A S A \triangle A O B \cong \triangle D O C$
ii)
(ii)


In ABC,
Now AB =AC (Given)
$\angle \mathrm{ABD}=\angle \mathrm{ACD}=40^{\circ}$ (Angles opposite to equal sides)
$\angle \mathrm{ABD}+\angle \mathrm{ACD}+\angle \mathrm{BAC}=180^{\circ}$ (Angle sum property)
$40^{\circ}+40^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\angle B A C=180^{\circ}-80^{\circ}=100^{\circ}$
$\angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{BAC} \angle \mathrm{BAD}=\angle \mathrm{BAC}-\angle \mathrm{DAC}=100^{\circ}-50^{\circ}=50^{\circ}$
$\angle B A D=\angle C A D=50^{\circ}$
Therefore, by ASA, $\triangle A B D \cong \triangle A D C$
iii)
(iii)


In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (Angle sum property)
$\angle \mathrm{C}=180^{\circ}-\angle \mathrm{A}-\angle \mathrm{B} \angle \mathrm{C}=180^{\circ}-30^{\circ}-90^{\circ}=60^{\circ}$
In PQR,
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$ (Angle sum property)
$\angle \mathrm{P}=180^{\circ}-\angle \mathrm{Q}-\angle \mathrm{R} \angle \mathrm{P}=180^{\circ}-60^{\circ}-90^{\circ}=30^{\circ}$
$\angle B A C=\angle Q P R=30^{\circ}$
$\angle \mathrm{BCA}=\angle \mathrm{PRQ}=60^{\circ}$ and $\mathrm{AC}=\mathrm{PR}$ (Given)
Therefore, by $A S A, \triangle A B C \cong \triangle P Q R$
iv)


We have only
$B C=Q R$ but none of the angles of $\triangle A B C$ and $\triangle P Q R$ are equal.
Therefore, $\triangle \mathrm{ABC}$ and Cong $\triangle \mathrm{PRQ}$

## Question: 2

In figure, $A D$ bisects $A$ and $A D$ and $A D \perp B C$.
(i) Is $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ ?
(ii) State the three pairs of matching parts you have used in (i)
(iii) Is it true to say that $\mathrm{BD}=\mathrm{DC}$ ?


## Solution:

(i) Yes, $\triangle A D B \cong \triangle A D C$, by ASA criterion of congruency.
(ii) We have used $\angle \mathrm{BAD}=\angle \mathrm{CAD} \angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$

Since, $A D \perp B C$ and $A D=D A$
(iii) Yes, $B D=D C$ since, $\triangle A D B \cong \triangle A D C$

## Question: 3

Draw any triangle $A B C$. Use ASA condition to construct other triangle congruent to it.


## Solution:

We have drawn
$\triangle \mathrm{ABC}$ with $\angle \mathrm{ABC}=65^{\circ}$ and $\angle \mathrm{ACB}=70^{\circ}$
We now construct $\triangle P Q R \cong \triangle A B C$ has $\angle P Q R=65^{\circ}$ and $\angle P R Q=70^{\circ}$
Also we construct $\triangle P Q R$ such that $B C=Q R$
Therefore by ASA the two triangles are congruent

## Question: 4

In $\triangle A B C$, it is known that $\angle B=C$. Imagine you have another copy of $\triangle A B C$
(i) Is $\triangle A B C \cong \triangle A C B$
(ii) State the three pairs of matching parts you have used to answer (i).
(iii) Is it true to say that $A B=A C$ ?


## Solution:

(i) Yes $\triangle A B C \cong \triangle A C B$
(ii) We have used $\angle \mathrm{ABC}=\angle \mathrm{ACB}$ and $\angle \mathrm{ACB}=\angle \mathrm{ABC}$ again.

Also $B C=C B$
(iii) Yes it is true to say that $A B=A C$ since $\angle A B C=\angle A C B$.

## Question: 5

In Figure, $A X$ bisects $\angle B A C$ as well as $\angle B D C$. State the three facts needed to ensure that $\triangle A C D \cong \triangle A B D$


## Solution:

As per the given conditions, $\angle \mathrm{CAD}=\angle \mathrm{BAD}$ and $\angle \mathrm{CDA}=\angle \mathrm{BDA}$ (because AX bisects $\angle \mathrm{BAC}$ )
$\mathrm{AD}=\mathrm{DA}$ (common)

## Question: 6

In Figure, $\mathrm{AO}=\mathrm{OB}$ and $\angle \mathrm{A}=\angle \mathrm{B}$.
(i) Is $\triangle A O C \cong \triangle B O D$
(ii) State the matching pair you have used, which is not given in the question.
(iii) Is it true to say that $\angle \mathrm{ACO}=\angle \mathrm{BDO}$ ?


## Solution:

We have
$\angle \mathrm{OAC}=\angle \mathrm{OBD}$,
$A O=O B$
Also, $\angle \mathrm{AOC}=\angle \mathrm{BOD}$ (Opposite angles on same vertex)
Therefore, by ASA $\triangle A O C \cong \triangle B O D$

## Congruence Exercise 16.5

## Question: 1

In each of the following pairs of right triangles, the measures of some part are indicated alongside. State by the application of RHS congruence conditions which are congruent, and also state each result in symbolic form.

## Solution:

i)

$\angle \mathrm{ADC}=\angle \mathrm{BCA}=90^{\circ}$
$A D=B C$ and hyp $A B=$ hyp $A B$
Therefore, by $R H S \triangle A D B \cong \triangle A C B$
ii)
(ii)

$A D=A D$ (Common)
hyp $A C=$ hyp $A B$ (Given)
$\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$ (Linear pair)
$\angle \mathrm{ADB}+90^{\circ}=180^{\circ}$
$\angle \mathrm{ADB}=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
Therefore, by RHS $\triangle \mathrm{ADB}=\triangle \mathrm{ADC}$
(iii)

hyp $\mathrm{AO}=$ hyp $\mathrm{DOBO}=\mathrm{CO} \angle \mathrm{B}=\angle \mathrm{C}=90^{\circ}$
Therefore, by $\mathrm{RHS}, \triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$
iv)


Hyp $A=\operatorname{Hyp} C A B C=D C \angle A B C=\angle A D C=90^{\circ}$
Therefore, by $R H S, \triangle A B C \cong \triangle A D C$
v)
(v)

$B D=D B$ Hyp $A B=\operatorname{Hyp} B C$, as per the given figure,
$\angle \mathrm{BDA}+\angle \mathrm{BDC}=180^{\circ}$
$\angle \mathrm{BDA}+90^{\circ}=180^{\circ}$
$\angle \mathrm{BDA}=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{BDA}=\angle \mathrm{BDC}=90^{\circ}$
Therefore, by RHS, $\triangle A B D \cong \triangle C B D$

## Question: 2

$\triangle A B C$ is isosceles with $A B=A C . A D$ is the altitude from $A$ on $B C$.
i) Is $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ ?
(ii) State the pairs of matching parts you have used to answer (i).
(iii) Is it true to say that $\mathrm{BD}=\mathrm{DC}$ ?

## Solution:

(i) Yes, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by RHS congruence condition.
(ii) We have used Hyp $A B=\operatorname{Hyp} A C$
$A D=D A$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}(\mathrm{AD} \perp \mathrm{BC}$ at point D$)$
(iii)Yes, it is true to say that $\mathrm{BD}=\mathrm{DC}$ (c.p.c.t) since we have already proved that the two triangles are congruent.

## Question: 3

$\triangle A B C$ is isosceles with $A B=A C$. Also. $A D \perp B C$ meeting $B C$ in $D$. Are the two triangles $A B D$ and $A C D$ congruent? State in symbolic form. Which congruence condition do you use? Which side of $A D C$ equals $B D$ ? Which angle of $\triangle A D C$ equals $\angle B$ ?

## Solution:

We have $A B=A C$
$\mathrm{AD}=\mathrm{DA}$ (common)
And, $\angle A D C=\angle A D B(A D \perp B C$ at point $D)$
Therefore, from (i), (ii) and (iii), by RHS congruence condition, $\triangle A B D \cong \triangle A C D$, the triangles are congruent.

Therefore, $B D=C D$.
And $\angle \mathrm{ABD}=\angle \mathrm{ACD}$ (c.p.c.t)

## Question: 4

Draw a right triangle ABC. Use RHS condition to construct another triangle congruent to it.

## Solution:



Consider
$\triangle A B C$ with $\angle B$ as right angle.
We now construct another triangle on base $B C$, such that $\angle C$ is a right angle and $A B=D C$
Also, BC = CB
Therefore, $\mathrm{BC}=\mathrm{CB}$
Therefore by RHS, $\triangle A B C \cong \triangle D C B$

## Question: 5

In figure, $B D$ and $C E$ are altitudes of $\triangle A B C$ and $B D=C E$.
(i) Is $\triangle B C D \cong \triangle C B E$ ?
(ii) State the three pairs or matching parts you have used to answer (i)


## Solution:

(i) Yes, $\triangle \mathrm{BCD} \cong \triangle \mathrm{CBE}$ by RHS congruence condition.
(ii) We have used hyp $B C=$ hyp $C B$
$B D=C E$ (Given in question)
And $\angle \mathrm{BDC}=\angle \mathrm{CBE}=90^{\circ}$

