Exercise - 15.1

1. Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and two parallels.

Sol:

(i) $\triangle P C D$ and trapezium ABCD or on the same base CD and between the same parallels AB and DC .
(ii) Parallelogram $A B C D$ and $A P Q D$ are on the same base $A D$ and between the same parallels $A D$ and $B Q$.
(iii) Parallelogram ABCD and $\triangle P Q R$ are between the same parallels AD and BC but they are not on the same base.
(iv) $\triangle Q R T$ and parallelogram PQRS are on the same base QR and between the same parallels QR and PS
(v) Parallelogram PQRS and trapezium SMNR on the same base SR but they are not between the same parallels.
(vi) Parallelograms PQRS, AQRD, BCQR and between the same parallels also, parallelograms PQRS, BPSC and APSD are between the same parallels.

Exercise - 15.2

1. In fig below, ABCD is a parallelogram, $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8$ cm and $\mathrm{CF}=10 \mathrm{~cm}$, find AD .

Sol:

Given that,
In a parallelogram $A B C D, C D=A B=16 \mathrm{~cm} \quad$ [Opposite sides of a parallelogram are equal]
We know that,
Area of parallelogram $=$ base \times corresponding attitude
Area of parallelogram $A B C D=C D \times A E=A D \times C F$
$16 \mathrm{~cm} \times 8 \mathrm{~cm}=A D \times 10 \mathrm{~cm}$
$A D=\frac{16 \times 8}{10} \mathrm{~cm}=12 \cdot 8 \mathrm{~cm}$
Thus, the length of AD is $12 \cdot 8 \mathrm{~cm}$
2. In Q . No 1 , if $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{CF}=10 \mathrm{~cm}$, and $\mathrm{AE}=8 \mathrm{~cm}$, find AB .

Sol:

We know that,
Area of parallelogram $\mathrm{ABCD}=\mathrm{AD} \times \mathrm{CF}$
Again area of parallelogram $A B C D=D C \times A E$
Compare equation (1) and equation (2)

$$
\begin{aligned}
& A D \times C F=D C \times A E \\
& \Rightarrow 6 \times 10=D \times B \\
& \Rightarrow D=\frac{60}{8}=7.5 \mathrm{~cm} \\
& \therefore A B=D C=7.5 \mathrm{~cm} \quad[\therefore \text { Opposite sides of a parallelogram are equal] }
\end{aligned}
$$

3. Let ABCD be a parallelogram of area $124 \mathrm{~cm}^{2}$. If E and F are the mid-points of sides AB and CD respectively, then find the area of parallelogram AEFD.
Sol:

Given,
Area of parallelogram $A B C D=124 \mathrm{~cm}^{2}$
Construction: draw $A P \perp D C$
Proof:
Area of parallelogram $A F E D=D F \times A P$
And area of parallelogram $E B C F=F C \times A P$
And $D F=F C \quad$.....(3) $\quad[\mathrm{F}$ is the midpoint of DC$]$
Compare equation (1), (2) and (3)
Area of parallelogram $A E F D=$ Area of parallelogram $E B C F$
\therefore Area of parallelogram $A E F D=\frac{\text { Area of parallelogram } A B C D}{2}$

$$
=\frac{124}{2}=62 \mathrm{~cm}^{2}
$$

4. If ABCD is a parallelogram, then prove that
$\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B C D)=\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D)=\frac{1}{2} \operatorname{ar}\left(\|^{g m} A B C D\right)$

Sol:

Given: $A B C D$ is a parallelogram
To prove: area $(\triangle A B D)=\operatorname{ar}(\triangle A B C)=\operatorname{are}(\triangle A C D)$
$=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$
Proof: we know that diagonals of a parallelogram divides it into two equilaterals.
Since, $A C$ is the diagonal.

Then, $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D)=\frac{1}{2} \operatorname{ar}\left(\|^{\|^{m}} A B C D\right)$
Since, BD is the diagonal
Then, $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B C D)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$
Compare equation (1) and (2)
$\therefore \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D)$
$=\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle B C D)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$

Exercise - 15.3

1. In the below figure, compute the area of quadrilateral ABCD .

Sol:
Given that
$D C=17 \mathrm{~cm}$
$A D=9 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$
In $\triangle B C D$ we have
$C D^{2}=B D^{2}+B C^{2}$
$\Rightarrow(17)^{2}=B D^{2}+(8)^{2}$
$\Rightarrow B D^{2}=289-64$
$\Rightarrow B D=15$
In $\triangle A B D$, we have

$$
A B^{2}+A D^{2}=B D^{2}
$$

$$
\Rightarrow(15)^{2}=A B^{2}+(9)^{2}
$$

$\Rightarrow A B^{2}=225-81=144$
$\Rightarrow A B=12$
$\operatorname{ar}($ quad, $A B C D)=\operatorname{ar}(\triangle A B D)+\operatorname{ar}(\triangle B C D)$
$\Rightarrow \operatorname{ar}($ quad, $A B C D)=\frac{1}{2}(12 \times 9)+\frac{1}{2}(8 \times 17)=54+68$
$=112 \mathrm{~cm}^{2}$
$\Rightarrow \operatorname{ar}\left(\right.$ quad, $A B C D=\frac{1}{2}(12 \times 9)+\frac{1}{2}(8 \times 15)$
$=54+60 \mathrm{~cm}^{2}$
$=114 \mathrm{~cm}^{2}$
2. In the below figure, $P Q R S$ is a square and T and U are respectively, the mid-points of PS and QR . Find the area of $\triangle \mathrm{OTS}$ if $\mathrm{PQ}=8 \mathrm{~cm}$.

Sol:
From the figure
T and U are the midpoints of PS and QR respectively.
$\therefore T U \| P Q$
$\Rightarrow T O \| P Q$
Thus, in $\triangle P Q S, T$ is the midpoint of PS and $T O \| P Q$
$\therefore T O=\frac{1}{2} P Q=4 \mathrm{~cm}$
Also, $T S=\frac{1}{2} P S=4 \mathrm{~cm}$
$\therefore \operatorname{ar}(\triangle O T S)=\frac{1}{2}(T O \times T S)=\frac{1}{2}(4 \times 4) \mathrm{cm}^{2}=8 \mathrm{~cm}^{2}$
3. Compute the area of trapezium PQRS is Fig. below.

Sol:
We have
$\operatorname{ar}(\operatorname{trap} P Q R S)=\operatorname{ar}($ rect $P S R T)+$ are $a(\triangle Q R T)$
$\Rightarrow \operatorname{ar}($ trap $\cdot P Q R S)=P T \times R T+\frac{1}{2}(Q T \times R T)$
$=8 \times R T+\frac{1}{2}(8 \times R T)=12 \times R T$
In $\triangle Q R T$, we have

$$
Q R^{2}=Q T^{2}+R T^{2}
$$

$\Rightarrow R T^{2}=Q R^{2}-Q T^{2}$
$\Rightarrow(R T)^{2}=17^{2}-8^{2}=225$
$\Rightarrow R T=15$
Hence, $\operatorname{ar}(\operatorname{trap} \cdot P Q R S)=12 \times 15 \mathrm{~cm}^{2}=180 \mathrm{~cm}^{2}$
4. In the below fig. $\angle \mathrm{AOB}=90^{\circ}, \mathrm{AC}=\mathrm{BC}, \mathrm{OA}=12 \mathrm{~cm}$ and $\mathrm{OC}=6.5 \mathrm{~cm}$. Find the area of $\triangle \mathrm{AOB}$.

Sol:
Since, the midpoint of the hypotenuse of a right triangle is equidistant from the vertices
$\therefore C A=C B=O C$
$\Rightarrow C A=C B=6 \cdot 5 \mathrm{~cm}$
$\Rightarrow A B=13 \mathrm{~cm}$
In a right angle triangle OAB , we have

$$
\begin{aligned}
& A B^{2}=O B^{2}+O A^{2} \\
& \Rightarrow 13^{2}=O B^{2}+12^{2} \\
& \Rightarrow O B^{2}=13^{2}-12^{2}=169-144=25 \\
& \Rightarrow O B=5 \\
& \therefore \operatorname{ar}(\triangle A O B)=\frac{1}{2}(O A \times O B)=\frac{1}{2}(12 \times 5)=30 \mathrm{~cm}^{2}
\end{aligned}
$$

5. In the below fig. ABCD is a trapezium in which $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{AD}=\mathrm{BC}=5 \mathrm{~cm}, \mathrm{DC}=\mathrm{xcm}$, and distance between AB and DC is 4 cm . Find the value of x and area of trapezium ABCD .

Sol:
Draw $A L \perp D C, B M \perp D C$ Then,
$A L=B M=4 \mathrm{~cm}$ and $L M=7 \mathrm{~cm}$
In $\triangle A D L$, we have
$A D^{2}=A L^{2}+D L^{2} \Rightarrow 25=16+D L^{2} \Rightarrow D L=3 \mathrm{~cm}$
Similarly $M C=\sqrt{B C^{2}-B M^{2}}=\sqrt{25-16}=3 \mathrm{~cm}$
$\therefore x=C D=C M+M L+C D=3+7+3=13 \mathrm{~cm}$
$\operatorname{ar}(\operatorname{trap} \cdot A B C D)=\frac{1}{2}(A B+C D) \times A L=\frac{1}{2}(7+13) \times 4 \mathrm{~cm}^{2}$
$=40 \mathrm{~cm}^{2}$
6. In the below fig. OCDE is a rectangle inscribed in a quadrant of a circle of radius 10 cm . If $\mathrm{OE}=2 \sqrt{5}$, find the area of the rectangle.

Sol:

Given $O D=10 \mathrm{~cm}$ and $O E=2 \sqrt{5} \mathrm{~cm}$
By using Pythagoras theorem
$\therefore O D^{2}=O E^{2}+D E^{2}$
$\Rightarrow D E=\sqrt{O D^{2}-O F^{2}}=\sqrt{(10)^{2}-(2 \sqrt{5})^{2}}=4 \sqrt{5} \mathrm{~cm}$
$\therefore \operatorname{ar}($ rect $D C D E)=O E \times D E=2 \sqrt{5} \times 4 \sqrt{5} \mathrm{~cm}^{2}$
$=40 \mathrm{~cm}^{2} \quad[\because \sqrt{5} \times \sqrt{5}=5]$
7. In the below fig. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$. Prove that ar $(\triangle \mathrm{AOD})=$ $\operatorname{ar}(\triangle \mathrm{BOC})$.

Sol:

Given: $A B C D$ is a trapezium with $A B \| D C$
To prove: $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(B O C)$
Proof:
Since $\triangle A D C$ and $\triangle B D C$ are on the same base DC and between same parallels AB and DC
Then, $\operatorname{ar}(\triangle A D C=\operatorname{ar}(\triangle B D C)$
$\Rightarrow \operatorname{ar}(\triangle A O D)+\operatorname{ar}(D O C)=\operatorname{ar}(\triangle B O C)+\operatorname{ar}(\triangle D O C)$
$\Rightarrow \operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$
8. In the given below fig. $\mathrm{ABCD}, \mathrm{ABFE}$ and CDEF are parallelograms. Prove that ar ($\triangle \mathrm{ADE}$) $=\operatorname{ar}(\triangle \mathrm{BCF})$

Sol:

Given that,
$A B C D$ is a parallelogram $\Rightarrow A D=B C$
$C D E F$ is a parallelogram $\Rightarrow D E=C F$
$A B F E$ is a parallelogram $\Rightarrow A E=B F$
Thus, in $\triangle s A D E$ and $B C F$, we have
$A D=B C, D E=C F$ and $A E=B F$
So, by SSS criterion of congruence, we have
$\triangle A D E \cong \triangle A B C F$
$\therefore \operatorname{ar}(\triangle A D E)=\operatorname{ar}(B C F)$
9. Diagonals AC and BD of a quadrilateral ABCD intersect each other at P . Show that: $\operatorname{ar}(\triangle \mathrm{APB}) \times \operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{APD}) \times \operatorname{ar}(\triangle \mathrm{BPC})$
Sol:

Construction: Draw $B Q \perp A C$ and $D R \perp A C$
Proof:
L.H.S
$=\operatorname{ar}(\triangle A P B) \times \operatorname{ar}(\triangle C P D)$
$=\frac{1}{2}[(A P \times B Q)] \times\left(\frac{1}{2} \times P C \times D R\right)$
$=\left(\frac{1}{2} \times P C \times B Q\right) \times\left(\frac{1}{2} \times A P \times D R\right)$
$=\operatorname{ar}(\triangle B P C) \times \operatorname{ar}(A P D)$
$=$ RHS
$\therefore L H S=R H S$
Hence proved.
10. In the below Fig, $A B C$ and $A B D$ are two triangles on the base $A B$. If line segment $C D$ is bisected by AB at O , show that ar $(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ABD})$

Sol:

Given that $C D$ is bisected at O by AB
To prove: $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A B D)$
Construction: Draw $\mathrm{CP} \perp \mathrm{AB}$ and $\mathrm{DQ} \perp \mathrm{AB}$

Proof:-
$\operatorname{ar}(\triangle A B C)=\frac{1}{2} \times A B \times C P$
$\operatorname{ar}(\triangle A B C)=\frac{1}{2} \times A B \times D Q$
In $\angle C P O$ and $\triangle D Q O$
$\angle C P Q=\angle D Q O \quad\left[\right.$ Each $\left.90^{\circ}\right]$
Given that $C O=D O$
$\angle C O P=\angle D O Q$
Then, $\triangle C P O \cong D Q O$
[vertically opposite angles are equal]
[By AAS condition]
$\therefore C P=D Q$
[CP.C.T]
Compare equation (1), (2) and (3)
Area $(\triangle A B C)=$ area of $\triangle A B D$
11. If P is any point in the interior of a parallelogram $A B C D$, then prove that area of the triangle APB is less than half the area of parallelogram.
Sol:

Draw $D N \perp A B$ and $P M \perp A B$.
Now,
Area $\left(\|^{\mathrm{gm}} A B C D\right)=A B \times D N, \operatorname{ar}(\triangle A P B)=\frac{1}{2}(A B \times P M)$
Now, $P M<D N$
$\Rightarrow A B \times P M<A B \times D N$
$\Rightarrow \frac{1}{2}(A B \times P M)<\frac{1}{2}(A B \times D N)$
$\Rightarrow \operatorname{area}(\triangle A P B)<\frac{1}{2} \operatorname{ar}($ Parragram $A B C D)$
12. If $A D$ is a median of a triangle $A B C$, then prove that triangles $A D B$ and $A D C$ are equal in area. If G is the mid-point of median AD , prove that ar $(\triangle \mathrm{BGC})=2$ ar $(\triangle \mathrm{AGC})$.
Sol:

Draw $A M \perp B C$
Since, $A D$ is the median of $\triangle A B C$
$\therefore B D=D C$
$\Rightarrow B D=A M=D C \times A M$
$\Rightarrow \frac{1}{2}(B D \times A M)=\frac{1}{2}(D C \times A M)$
$\Rightarrow \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A C D)$
In $\triangle B G C, G D$ is the median
$\therefore \operatorname{ar}(B G D)=\operatorname{area}(O G D)$
In $\triangle A C D, C G$ is the median
$\therefore \operatorname{area}(A G C)=\operatorname{area}(\triangle C G D)$
From (i) and (ii), we have
Area $(\triangle B G D)=\operatorname{ar}(\triangle A G C)$
But, $\operatorname{ar}(\triangle B G C)=2 \operatorname{ar}(B G D)$
$\therefore \operatorname{ar}(B G C)=2 \operatorname{ar}(\triangle A G C)$
13. A point D is taken on the side $B C$ of a $\triangle A B C$ such that $B D=2 D C$. Prove that $\operatorname{ar}(\triangle A B D)=$ $2 \operatorname{ar}(\triangle \mathrm{ADC})$.
Sol:

Given that,
In $\triangle A B C, B D=2 D C$
To prove: $\operatorname{ar}(\triangle A B D)=2 \operatorname{ar}(\triangle A D C)$
Construction: Take a point E on BD such that $B E=E D$
Proof: Since, $B E=E D$ and $B D=2 D C$
Then, $B E=E D=D C$
We know that median of $\Delta^{l e}$ divides it into two equal $\Delta^{\text {les }}$
\therefore In $\triangle A B D, A E$ is a median
Then, area $(\triangle A B D)=2 \operatorname{ar}(\triangle A E D)$
In $\triangle A E C, A D$ is a median
Then area $(\triangle A E D)=\operatorname{area}(\triangle A D C)$
Compare equation (i) and (ii)
Area $(\triangle A B D)=2 \operatorname{ar}(\triangle A D C)$.
14. $A B C D$ is a parallelogram whose diagonals intersect at O. If P is any point on $B O$, prove
that:
(i) $\operatorname{ar}(\triangle \mathrm{ADO})=\operatorname{ar}(\triangle \mathrm{CDO})$
(ii) ar $(\triangle \mathrm{ABP})=$ ar $(\triangle \mathrm{CBP})$

Sol:

Given that $A B C D$ is a parallelogram
To prove: (i) $\operatorname{ar}(\triangle A D O)=\operatorname{ar}(\triangle C D O)$
(ii) $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle C B P)$

Proof: We know that, diagonals of a parallelogram bisect each other
$\therefore A O=O C$ and $B O=O D$
(i) In $\triangle D A C$, since DO is a median

Then area $(\triangle A D O)=\operatorname{area}(\triangle C D O)$
(ii) In $\triangle B A C$, Since $B O$ is a median

Then; area $(\triangle B A O)=\operatorname{area}(\triangle B C O)$
In a $\triangle P A C$, Since PO is a median
Then, area $(\triangle P A O)=\operatorname{area}(\triangle P C O)$
Subtract equation (2) from equation (1)

$$
\begin{aligned}
& \Rightarrow \operatorname{area}(\triangle B A O)-\operatorname{ar}(\triangle P A O)=\operatorname{ar}(\triangle B C O)-\operatorname{area}(\triangle P C O) \\
& \Rightarrow \operatorname{Area}(\triangle A B P)=\text { Area of } \triangle C B P
\end{aligned}
$$

15. ABCD is a parallelogram in which BC is produced to E such that $\mathrm{CE}=\mathrm{BC}$. AE intersects CD at F .
(i) Prove that ar $(\triangle \mathrm{ADF})=\operatorname{ar}(\triangle \mathrm{ECF})$
(ii) If the area of $\triangle \mathrm{DFB}=3 \mathrm{~cm}^{2}$, find the area of $\|^{\mathrm{gm}} \mathrm{ABCD}$.

Sol:

In triangles $A D F$ and $E C F$, we have
$\angle A D F=\angle E C F \quad$ [Alternative interior angles, Since $A D \| B E$]
$A D=E C$
[Since $A D=B C=C E]$
And $\angle D F A=\angle C F A$
[vertically opposite angles]
So, by AAS congruence criterion, we have
$\triangle A D F \cong E C F$
$\Rightarrow \operatorname{area}(\triangle A D F)=\operatorname{area}(\triangle E C F)$ and $D F=C F$.
Now, $D F=C F$
$\Rightarrow B F$ is a median in $\triangle B C D$
$\Rightarrow \operatorname{area}(\triangle B C D)=2 \operatorname{ar}(\triangle B D F)$
$\Rightarrow \operatorname{area}(\triangle B C D)=2 \times 3 \mathrm{~cm}^{2}=6 \mathrm{~cm}^{2}$
Hence, $\operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)=2 \operatorname{ar}(\triangle B C D)=2 \times 6 \mathrm{~cm}^{2}$
$=12 \mathrm{~cm}^{2}$

16. $A B C D$ is a parallelogram whose diagonals $A C$ and $B D$ intersect at O. A line through O intersects AB at P and DC at Q . Prove that ar $(\triangle \mathrm{POA})=\operatorname{ar}(\triangle \mathrm{QOC})$.

Sol:

In triangles $P O A$ and $Q O C$, we have
$\angle A O P=\angle C O Q \quad$ [vertically opposite angles]
$O A=O C \quad$ [Diagonals of a parallelogram bisect each other]
$\angle P A C=\angle Q C A[A B \| D C$; alternative angles]
So, by ASA congruence criterion, we have
$\triangle P O A \cong Q O C$
$\operatorname{Area}(\triangle P O A)=\operatorname{area}(\triangle Q O C)$.
17. ABCD is a parallelogram. E is a point on BA such that $\mathrm{BE}=2 \mathrm{EA}$ and F is a point on DC such that $\mathrm{DF}=2 \mathrm{FC}$. Prove that AE CF is a parallelogram whose area is one third of the area of parallelogram ABCD.
Sol:

Construction: Draw $F G \perp A B$
Proof: We have
$B E=2 E A$ and $D F=2 F C$
$\Rightarrow A B-A E=2 E A$ and $D C-F C=2 F C$
$\Rightarrow A B=3 E A$ and $D C=3 F C$
$\Rightarrow A E=\frac{1}{3} A B$ and $F C=\frac{1}{3} D C$
But $A B=D C$
Then, $\mathrm{AE}=\mathrm{DC} \quad$ [opposite sides of $\|^{\mathrm{gm}^{\mathrm{m}} \text {] }}$
Then, $A E=F C$.

Thus, $\mathrm{AE}=\mathrm{FC}$ and $\mathrm{AE} \| \mathrm{FC}$.
Then, $A E C F$ is a parallelogram
Now $\operatorname{ar}\left(\left\|\|^{\mathrm{gm}} A E C F\right)=A E \times F G\right.$
$\Rightarrow \operatorname{ar}\left(\|^{\mathrm{gm}} A E C F\right)=\frac{1}{3} A B \times F G$ from
$\Rightarrow 3 \operatorname{ar}\left(\|^{\mathrm{gm}} A E C F\right)=A B \times F G$
and area $\left[\left\|\|^{\mathrm{gm}} A B C D\right]=A B \times F G\right.$
Compare equation (2) and (3)
$\Rightarrow 3 \operatorname{ar}\left(\|^{\mathrm{gm}} A E C F\right)=\operatorname{area}\left(\|^{\mathrm{gm}} A B C D\right)$
$\Rightarrow \operatorname{area}\left(\|^{\mathrm{gm}} A E C F\right)=\frac{1}{3} \operatorname{area}\left(\|^{\mathrm{gm}} A B C D\right)$
18. In a $\triangle A B C, P$ and Q are respectively the mid-points of $A B$ and $B C$ and R is the mid-point of AP. Prove that :
(i) $\quad \operatorname{ar}(\triangle \mathrm{PBQ})=\operatorname{ar}(\triangle \mathrm{ARC})$
(ii) $\quad \operatorname{ar}(\triangle \mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ARC})$
(iii) $\quad \operatorname{ar}(\triangle \mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\triangle \mathrm{ABC})$.

Sol:

(i) We know that each median of a $\Delta^{l e}$ divides it into two triangles of equal area Since, $O R$ is a median of $\triangle C A P$

$$
\begin{equation*}
\therefore \operatorname{ar}(\triangle C R A)=\frac{1}{2} \operatorname{ar}(\triangle C A P) \tag{i}
\end{equation*}
$$

Also, $C P$ is a median of $\triangle C A B$
$\therefore \operatorname{ar}(\triangle C A P)=\operatorname{ar}(\triangle C P B)$
From (i) and (ii) we get
$\therefore \operatorname{area}(\triangle A R C)=\frac{1}{2} \operatorname{ar}(C P B)$
$P Q$ is the median of $\triangle P B C$
$\therefore \operatorname{area}(\triangle C P B)=2 \operatorname{area}(\triangle P B Q)$

From (iii) and (iv) we get
$\therefore \operatorname{area}(\triangle A R C)=\operatorname{area}(P B Q)$
(ii) Since QP and QR medians of $\Delta^{s} Q A B$ and $Q A P$ respectively.
$\therefore \operatorname{ar}(\triangle Q A P)=\operatorname{area}(\triangle Q B P)$
And area $(\triangle Q A P)=2 \operatorname{ar}(\triangle Q R P)$
From (vi) and (vii) we have
Area $(\triangle P R Q)=\frac{1}{2} \operatorname{ar}(\triangle P B Q)$
From (v) and (viii) we get
$\operatorname{Area}(\triangle P R Q)=\frac{1}{2} \operatorname{area}(\triangle A R C)$
(iii) Since, $\angle R$ is a median of $\triangle C A P$

$$
\begin{aligned}
& \therefore \operatorname{area}(\triangle A R C)=\frac{1}{2} \operatorname{ar}(\triangle C A P) \\
& \left.=\frac{1}{2} \times \frac{1}{2} \cdot \operatorname{ar}(A B C)\right] \\
& =\frac{1}{4} \operatorname{area}(A B C)
\end{aligned}
$$

Since RQ is a median of $\triangle R B C$

$$
\begin{aligned}
& \therefore \operatorname{ar}(\triangle R Q C)=\frac{1}{2} \operatorname{ar}(\triangle R B C) \\
& =\frac{1}{2}[\operatorname{ar}(\triangle A B C)-\operatorname{ar}(A R C)] \\
& =\frac{1}{2}\left[\operatorname{ar}(\triangle A B C)-\frac{1}{4}(\triangle A B C)\right] \\
& =\frac{3}{8}(\triangle A B C)
\end{aligned}
$$

19. $A B C D$ is a parallelogram, G is the point on $A B$ such that $A G=2 G B, E$ is a point of $D C$ such that $\mathrm{CE}=2 \mathrm{DE}$ and F is the point of BC such that $\mathrm{BF}=2 \mathrm{FC}$. Prove that:
(i) $\operatorname{ar}(A D E G)=\operatorname{ar}(G B C E)$
(ii) $\operatorname{ar}(\triangle E G B)=\frac{1}{6} \operatorname{ar}(A B C D)$
(iii) $\operatorname{ar}(\triangle E F C)=\frac{1}{2} \operatorname{ar}(\triangle E B F)$
(iv) $\operatorname{ar}(\triangle E B G)=\operatorname{ar}(\triangle E F C)$
(v) Find what portion of the area of parallelogram is the area of $\triangle E F G$.

Sol:

Given,
$A B C D$ is a parallelogram
$A G=2 G B, C E=2 D E$ and $B F=2 F C$
To prove:
(i) $\operatorname{ar}(A D E G)=\operatorname{ar}(G B C E)$
(ii) $\operatorname{ar}(\triangle E G B)=\frac{1}{6} \operatorname{are}(A B C D)$
(iii) $\operatorname{ar}(\triangle E F C)=\frac{1}{2} \operatorname{area}(\triangle E B F)$
(iv) area $(\triangle E B G)=\frac{3}{2} \operatorname{area}(E F C)$
(v) Find what portion of the area of parallelogram is the area of $\triangle E F G$.

Construction: draw $E P \perp A B$ and $E Q \perp B C$
Proof : we have,
$A G=2 G B$ and $C E=2 D E$ and $B F=2 F C$
$\Rightarrow A B-G B=2 G B$ and $C D-D E=2 D E$ and $B C-F C=2 F C$
$\Rightarrow A B-G B=2 G B$ and $C D-D E=2 D E$ and $B C-F C=2 F C$.
$\Rightarrow A B=3 G B$ and $C D=3 D E$ and $B C=3 F C$
$\Rightarrow G B=\frac{1}{3} A B$ and $D E=\frac{1}{3} C D$ and $F C=\frac{1}{3} B C$
(i) $\operatorname{ar}(A D E G)=\frac{1}{2}(A G+D E) \times E P$

$$
\begin{align*}
& \Rightarrow \operatorname{ar}(A D E G)=\frac{1}{2}\left(\frac{2}{3} A B+\frac{1}{3} C D\right) \times E P \quad[\text { By using }(1)] \\
& \Rightarrow \operatorname{ar}(A D E G)=\frac{1}{2}\left(\frac{2}{3} A B+\frac{1}{3} A B\right) \times E P \quad[\because A B=C D] \\
& \Rightarrow \operatorname{ar}(A D E G)=\frac{1}{2} \times A B \times E P \tag{2}
\end{align*}
$$

And $\operatorname{ar}(G B C E)=\frac{1}{2}(G B+C E) \times E P$
$\Rightarrow \operatorname{ar}(G B C E)=\frac{1}{2}\left[\frac{1}{3} A B+\frac{2}{3} C D\right] \times E P$
[By using (1)]
$\Rightarrow \operatorname{ar}(G B C E)=\frac{1}{2}\left[\frac{1}{3} A B+\frac{2}{3} A B\right] \times E P \quad[\because A B=C D]$
$\Rightarrow \operatorname{ar}(G B C E)=\frac{1}{2} \times A B \times E P$
Compare equation (2) and (3)
(ii) $\operatorname{ar}(\triangle E G B)=\frac{1}{2} \times G B \times E P$
$=\frac{1}{6} \times A B \times E B$
$\left.=\frac{1}{6} \operatorname{ar}(1)^{9 m} A B C D\right]$.
(iii) Area $(\triangle E F C)=\frac{1}{2} \times F C \times E Q$

And area $(\triangle E B F)=\frac{1}{2} \times B F \times E Q$
$\Rightarrow \operatorname{ar}(\triangle E B F)=\frac{1}{2} \times 2 F C \times E Q$
$[B F=2 F C$ given $]$
$\Rightarrow \operatorname{ar}(\triangle E B F)=F C \times E Q$
Compare equation 4 and 5
$\operatorname{Area}(\triangle E F C)=\frac{1}{2} \times \operatorname{area}(\triangle E B F)$
(iv) From (i) part

$$
\begin{equation*}
\operatorname{ar}(\triangle E G B)=\frac{1}{6} \operatorname{ar}\left(11^{5 m} A B C D\right) \tag{6}
\end{equation*}
$$

From (iii) part
$\operatorname{ar}(\triangle E F C)=\frac{1}{2} \operatorname{ar}(\triangle E B F)$
$\Rightarrow \operatorname{ar}(\triangle E F C)=\frac{1}{3} \operatorname{ar}(\triangle E B C)$
$\Rightarrow \operatorname{ar}(\triangle E F C)=\frac{1}{3} \times \frac{1}{2} \times C E \times E P$
$=\frac{1}{2} \times \frac{1}{3} \times \frac{2}{3} C D \times E P$
$=\frac{1}{6} \times \frac{2}{3} \times \operatorname{ar}\left(11^{g m} A B C D\right)$
$\Rightarrow \operatorname{ar}(\Delta E F C)=\frac{2}{3} \times \operatorname{ar}(\Delta E G B)$
[By using]
$\Rightarrow \operatorname{ar}(\triangle E G B)=\frac{3}{2} \operatorname{ar}(E F C)$.
(v) Area $(\triangle E F G)=\operatorname{ar}($ Trap $\cdot B G E C)=-\operatorname{ar}(\triangle B G F) \rightarrow(1)$

Now, area $($ trap $B G E C)=\frac{1}{2}(G B+E C) \times E P$
$=\frac{1}{2}\left(\frac{1}{3} A B+\frac{2}{3} C D\right) \times E P$
$=\frac{1}{2} A B \times E P$
$=\frac{1}{2} \operatorname{ar}\left(11^{5 m} A B C D\right)$
Area $(\triangle E F C)=\frac{1}{9} \operatorname{area}\left(11^{5 m} A B C D\right) \quad$ [From iv part]
And area $(\triangle B G F)=\frac{1}{2} B F \times G R$
$=\frac{1}{2} \times \frac{2}{3} B C \times G R$
$=\frac{2}{3} \times \frac{1}{2} B C \times G R$
$=\frac{2}{3} \times \operatorname{ar}(\triangle G B C)$
$=\frac{2}{3} \times \frac{1}{2} G B \times E P$
$=\frac{1}{3} \times \frac{1}{3} A B \times E P$
$=\frac{1}{9} A B \times E P$
$=\frac{1}{9} \operatorname{ar}\left(11^{g m} A B C D\right)$
[From (1)]
$\operatorname{ar}(\triangle E F G)=\frac{1}{2} \operatorname{ar}\left(11^{g m} A B C D\right)=\frac{1}{9} \operatorname{ar}\left(11^{g m} A B C D\right)=\frac{1}{9} \operatorname{ar}\left(11^{8^{m}} A B C D\right)$
$=\frac{5}{18} \operatorname{ar}\left(11^{g m} A B C D\right)$.
20. In Fig. below, $\mathrm{CD} \| \mathrm{AE}$ and $\mathrm{CY} \| \mathrm{BA}$.
(i) Name a triangle equal in area of $\triangle C B X$
(ii) Prove that ar $(\triangle \mathrm{ZDE})=\operatorname{ar}(\triangle \mathrm{CZA})$
(iii) Prove that ar $(\mathrm{BCZY})=\operatorname{ar}(\triangle \mathrm{EDZ})$

Sol:

Since, $\triangle B C A$ and $\triangle B Y A$ are on the same base BA and between same parallels BA and CY
Then area $(\triangle B C A)=\operatorname{ar}(B Y A)$
$\Rightarrow \operatorname{ar}(\triangle C B X)+\operatorname{ar}(\triangle B X A)=\operatorname{ar}(\triangle B X A)+\operatorname{ar}(\triangle A X Y)$
$\Rightarrow \operatorname{ar}(\triangle C B X)=\operatorname{ar}(\triangle A X Y)$
Since, $\triangle A C E$ and $\triangle A D E$ are on the same base AE and between same parallels CD and AE
Then, $\operatorname{ar}(\triangle A C E)=\operatorname{ar}(\triangle A D E)$
$\Rightarrow \operatorname{ar}(\triangle C L A)+\operatorname{ar}(\triangle A Z E)=\operatorname{ar}(\triangle A Z E)+\operatorname{ar}(\triangle D Z E)$
$\Rightarrow \operatorname{ar}(\triangle C Z A)=(\Delta D Z E)$
Since $\triangle C B Y$ and $\triangle C A Y$ are on the same base $C Y$ and between same parallels
$B A$ and $C Y$
Then $\operatorname{ar}(\triangle C B Y)=\operatorname{ar}(\triangle C A Y)$
Adding $\operatorname{ar}(\triangle C Y G)$ on both sides, we get
$\Rightarrow \operatorname{ar}(\triangle C B X)+\operatorname{ar}(\triangle C Y Z)=\operatorname{ar}(\triangle C A Y)+\operatorname{ar}(\triangle C Y Z)$
$\Rightarrow \operatorname{ar}(B C Z X)=\operatorname{ar}(\triangle C Z A)$
Compare equation (2) and (3)
$\operatorname{ar}(B C Z Y)=\operatorname{ar}(\triangle D Z E)$
21. In below fig., $P S D A$ is a parallelogram in which $P Q=Q R=R S$ and $A P\|B Q\| C R$. Prove that ar $(\triangle \mathrm{PQE})=\operatorname{ar}(\triangle \mathrm{CFD})$.

Sol:

Given that PSDA is a parallelogram
Since, $A P\|B Q\| C R \| D S$ and $A D \| P S$
$\therefore P Q=C D$
In $\triangle B E D, \mathrm{C}$ is the midpoint of BD and $C F \| B E$
$\therefore F$ is the midpoint of $E D$
$\Rightarrow E F=P E$
Similarly
$E F=P E$
$\therefore P E=F D$
In $\triangle S P Q E$ and $C F D$, we have
$P E=F D$
$\angle E D Q=\angle F D C$,
[Alternative angles]
And $P Q=C D$
So by SAS congruence criterion, we have $\triangle P Q E \cong \triangle D C F$.
22. In the below fig. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{DC}=40 \mathrm{~cm}$ and $\mathrm{AB}=60$ cm . If X and Y are respectively, the mid-points of $A D$ and $B C$, prove that:
(i) $\mathrm{XY}=50 \mathrm{~cm}$
(ii) DCYX is a trapezium
(iii) $\quad \operatorname{ar}($ trap. $D C Y X)=\frac{9}{11} \operatorname{ar}($ trap. (XYBA))

Sol:

(i) Join DY and produce it to meet AB produced at P

In \triangle 's BYP and CYD we have
$\angle B Y P=(\angle C Y D) \quad$ [Vertical opposite angles]
$\angle D C Y=\angle P B Y \quad[\because D C \| A P]$
And $B Y=C Y$
So, by ASA congruence criterion, we have

$$
\triangle B Y P \cong C Y D
$$

$\Rightarrow D Y=Y P$ and $D C=B P$
$\Rightarrow y$ is the midpoint of DP
Also, x is the midpoint of AD
$\therefore X Y \| A P$ and $X Y=\frac{1}{2} A D$
$\Rightarrow x y=\frac{1}{2}(A B+B D)$
$\Rightarrow x y=\frac{1}{2}(B A+D C) \Rightarrow x y=\frac{1}{2}(60+40)$
(ii) We have
$X Y \| A P$
$\Rightarrow X Y \| A B$ and $A B \| D C \quad$ [As proved above]
$\Rightarrow X Y \| D C$
$\Rightarrow D C Y$ is a trapezium
(iii) Since x and y are the midpoint of DA and CB respectively
\therefore Trapezium DCXY and ABYX are of the same height say hm
Now

$$
\begin{aligned}
& \operatorname{ar}(\operatorname{Trap} D C X Y)=\frac{1}{2}(D C+X Y) \times h \\
& =\frac{1}{2}(50+40) h^{2} m^{2}=45 \mathrm{hcm}^{2} \\
& \Rightarrow \operatorname{ar}(\operatorname{trap} A B X Y)=\frac{1}{2}(A B+X Y) \times h=\frac{1}{2}(60+50) \mathrm{hm}^{3} \\
& \Rightarrow \operatorname{ar}(\operatorname{trap} A B Y X)=\frac{1}{2}(A B+X Y) \times h=\frac{1}{2}(60+50) \mathrm{hcm}^{2} \\
& =55 \mathrm{~cm}^{2} \\
& \frac{\operatorname{ar} \operatorname{trap}(Y X)}{\operatorname{ar~trap}(A B Y X)}=\frac{45 h}{55 h}=\frac{9}{11} \\
& \Rightarrow \operatorname{ar}(\operatorname{trap} D C Y X)=\frac{9}{11} \operatorname{ar}(\operatorname{trap} A B X Y)
\end{aligned}
$$

23. In Fig. below, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. AE intersects BC in F. Prove that

(i) $\operatorname{ar}(\triangle B D E)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$
(ii) $\operatorname{area}(\triangle B D E)=\frac{1}{2} \operatorname{ar}(\triangle B A E)$
(iii) $\operatorname{ar}(B E F)=\operatorname{ar}(\triangle A F D)$.
(iv) $\operatorname{area}(\triangle A B C)=2 \operatorname{area}(\triangle B E C)$
(v) $\operatorname{ar}(\triangle F E D)=\frac{1}{8} \operatorname{ar}(\triangle A F C)$
(vi) $\operatorname{ar}(\triangle B F E)=2 \operatorname{ar}(\triangle E F D)$

Sol:

Given that,
$A B C$ and $B D E$ are two equilateral triangles.
Let $A B=B C=C A=x$. Then $B D=\frac{x}{2}=D E=B E$
(i) We have
$\operatorname{ar}(\triangle A B C)=\frac{\sqrt{3}}{4} x^{2}$
$\operatorname{ar}(\triangle A B C)=\frac{\sqrt{3}}{4}\left(\frac{x}{2}\right)^{2}=\frac{1}{4} \times \frac{\sqrt{3}}{4} x^{2}$
$\Rightarrow \operatorname{ar}(\triangle B D E)=\frac{\sqrt{3}}{4}\left(\frac{x}{2}\right)^{2}$
(ii) It is given that triangles $A B C$ and $B E D$ are equilateral triangles

$$
\angle A C B=\angle D B E=60^{\circ}
$$

$\Rightarrow B E \| A C$ (Since alternative angles are equal)
Triangles $B A F$ and $B E C$ are on the same base
$B E$ and between the same parallel $B E$ and $A C$
$\therefore \operatorname{ar}(\triangle B A E)=\operatorname{area}(\triangle B E C)$
$\Rightarrow \operatorname{ar}(\triangle B A E)=2 \operatorname{ar}(\triangle B D E)$
$[\because E D$ is a median of $\triangle E B C ; \operatorname{ar}(\triangle B E C)=2 \operatorname{ar}(\triangle B D E)]$
$\Rightarrow \operatorname{area}(\triangle B D E)=\frac{1}{2} \operatorname{ar}(\triangle B A E)$
(iii) Since $\triangle A B C$ and $\triangle B D E$ are equilateral triangles
$\therefore \angle A B C=60^{\circ}$ and $\angle B D E=60^{\circ}$
$\angle A B C=\angle B D E$
$\Rightarrow A B \| D E \quad$ (Since alternative angles are equal)
Triangles BED and AED are on the same base ED and between the same parallels AB and DE .

$$
\begin{aligned}
& \therefore \operatorname{ar}(\triangle B E D)=\operatorname{area}(\triangle A E D) \\
& \Rightarrow \operatorname{ar}(\triangle B E D)-\operatorname{area}(\triangle E F D)=\operatorname{area}(A E D)-\operatorname{area}(\triangle E F D) \\
& \Rightarrow \operatorname{ar}(B E F)=\operatorname{ar}(\triangle A F D)
\end{aligned}
$$

(iv) Since ED is the median of $\triangle B E C$

$$
\begin{aligned}
& \therefore \operatorname{area}(\triangle B E C)=2 \operatorname{ar}(\triangle B D E) \\
& \Rightarrow \operatorname{ar}(\triangle B E C)=2 \times \frac{1}{4} \operatorname{ar}(\triangle A B C)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{ar}(\triangle B E C)=\frac{1}{2} \operatorname{area}(\triangle A B C) \\
& \Rightarrow \operatorname{area}(\triangle A B C)=2 \operatorname{area}(\triangle B E C)
\end{aligned}
$$

(v) Let h be the height of vertex E , corresponding to the side BD on triangle BDE

Let H be the height of the vertex A corresponding to the side BC in triangle ABC
From part (i)
$\operatorname{ar}(\triangle B D E)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$
$\Rightarrow \frac{1}{2} \times B D \times h=\frac{1}{4} \operatorname{ar}(\triangle A B C)$
$\Rightarrow B D \times h=\frac{1}{4}\left(\frac{1}{2} \times B C \times H\right)$
$\Rightarrow h=\frac{1}{2} H$
From part
Area $(\triangle B F E)=\operatorname{ar}(\triangle A F D)$
$=\frac{1}{2} \times F D \times H$
$=\frac{1}{2} \times F D \times H$
$=2\left(\frac{1}{2} \times F D \times 2 h\right)$
$=2 \operatorname{ar}(\triangle E F D)$
(vi) $\operatorname{area}(\triangle A F C)=\operatorname{area}(A F D)+\operatorname{area}(A D C)$
$\Rightarrow \operatorname{ar}(\triangle B F E)+\frac{1}{2} \operatorname{ar}(\triangle A B C)$
[using part (iii); and AD is the median $\triangle A B C$]
$=\operatorname{ar}(\triangle B F E)+\frac{1}{2} \times 4 \operatorname{ar}(\triangle B D E)$ using part (i)]
$=\operatorname{ar}(\triangle B F E)=2 \operatorname{ar}(\triangle F E D)$
$\operatorname{Area}(\triangle B D E)=\operatorname{ar}(\triangle B F E)+\operatorname{ar}(\triangle F E D)$
$\Rightarrow R \operatorname{ar}(\triangle F E D)+\operatorname{ar}(\triangle F E D)$
$\Rightarrow 3 \operatorname{ar}(\triangle F E D)$
From (2), (3) and (4) we get
Area $(\triangle A F C)=2 \operatorname{area}(\triangle F E D)+2 \times 3 \operatorname{ar}(\triangle F E D)$
$=8 \operatorname{ar}(\triangle F E D)$
Hence, area $(\triangle F E D)=\frac{1}{8} \operatorname{area}(A F C)$
24. D is the mid-point of side $B C$ of $\triangle A B C$ and E is the mid-point of $B D$. if O is the mid-point of AE , prove that $\operatorname{ar}(\triangle \mathrm{BOE})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})$.

Sol:

Given that
D is the midpoint of side BC of $\triangle A B C$.
E is the midpoint of BD and
O is the midpoint of AE
Since AD and $A E$ are the medians of $\triangle A B C$ and $\triangle A B D$ respectively
$\therefore \operatorname{ar}(\triangle A B D)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
$\operatorname{ar}(\triangle A B E)=\frac{1}{2} \operatorname{ar}(\triangle A B D)$
$O B$ is a median of $\triangle A B E$
$\therefore \operatorname{ar}(\triangle B O E)=\frac{1}{2} \operatorname{ar}(\triangle A B E)$
From i, (ii) and (iii) we have
$\operatorname{ar}(B O E)=\frac{1}{8} \operatorname{ar}(\triangle A B C)$
25. In the below fig. X and Y are the mid-points of $A C$ and $A B$ respectively, $Q P \| B C$ and CYQ and BXP are straight lines. Prove that ar $(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$.

Sol:

Since x and y are the midpoint AC and AB respectively
$\therefore X Y \| B C$
Clearly, triangles $B Y C$ and $B X C$ are on the same base BC and between the same parallels $X Y$ and $B C$
$\therefore \operatorname{area}(\triangle B Y C)=\operatorname{area}(B X C)$
$\Rightarrow \operatorname{area}(\triangle B Y C)=\operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle B X C)-\operatorname{ar}(B O C)$
$\Rightarrow \operatorname{ar}(\triangle B O Y)=\operatorname{ar}(\triangle C O X)$
$\Rightarrow \operatorname{ar}(B O Y)+\operatorname{ar}(X O Y)=\operatorname{ar}(\triangle C O X)+\operatorname{ar}(\triangle X O Y)$
$\Rightarrow \operatorname{ar}(\triangle B X Y)=\operatorname{ar}(\triangle C X Y)$
We observe that the quadrilateral XYAP and XYAQ are on the same base $X Y$ and between the same parallel XY and PQ.
$\therefore \operatorname{area}($ quad $X Y A P)=\operatorname{ar}(q u a d X Y P A)$
Adding (i) and (ii), we get
$\operatorname{ar}(\triangle B X Y)+\operatorname{ar}($ quad $X Y A P)=\operatorname{ar}(C X Y)+\operatorname{ar}(q u a d X Y Q A)$
$\Rightarrow \operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$
26. In the below fig. ABCD and AEFD are two parallelograms. Prove that
(i) $\mathrm{PE}=\mathrm{FQ}$
(ii) ar ($\triangle \mathrm{APE}): \operatorname{ar}(\triangle \mathrm{PFA})=\operatorname{ar} \Delta(\mathrm{QFD}): \operatorname{ar}(\triangle \mathrm{PFD})$
(iii) $\operatorname{ar}(\triangle P E A)=\operatorname{ar}(\triangle Q F D)$

Sol:

Given that, $A B C D$ and $A E F D$ are two parallelograms
To prove: (i) $P E=F Q$
(ii) $\frac{\operatorname{ar}(\triangle A P E)}{\operatorname{ar}(\triangle P F A)}=\frac{\operatorname{ar}(\triangle Q F D)}{\operatorname{ar}(\triangle P F D)}$
(iii) $\operatorname{ar}(\triangle P E A)=\operatorname{ar}(\triangle Q F D)$

Proof: (i) In $\triangle E P A$ and $\triangle F Q D$
$\angle P E A=\angle Q F D \quad[\because$ Corresponding angles $]$
$\angle E P A=\angle F Q D \quad$ [Corresponding angles]
$P A=Q D \quad\left[\right.$ opp \cdot sides of $\left.11^{g m}\right]$
Then, $\triangle E P A \cong \triangle F Q D$
[By. AAS condition]
$\therefore E P=F Q \quad[$ c.p.c.t $]$
(ii) Since, $\triangle P E A$ and $\triangle Q F D$ stand on the same base $P E$ and $F Q$ lie between the same parallels EQ and AD
$\therefore \operatorname{ar}(\triangle P E A)=\operatorname{ar}(\triangle Q F D) \rightarrow(1)$
$A D \quad \therefore \operatorname{ar}(\triangle P F A)=\operatorname{ar}(P F D)$
Divide the equation (i) by equation (2)
$\frac{\text { area of }(\triangle P E A)}{\text { area of }(\triangle P F A)}=\frac{\operatorname{ar} \triangle(Q F D)}{\operatorname{ar} \triangle(P F D)}$
(iii) From (i) part $\triangle E P A \cong F Q D$

Then, $\operatorname{ar}(\triangle E D A)=\operatorname{ar}(\triangle F Q D)$
27. In the below figure, $A B C D$ is parallelogram. O is any point on $A C . P Q \| A B$ and $L M \|$ AD. Prove that ar $\left(\|^{\mathrm{gm}} \mathrm{DLOP}\right)=\operatorname{ar}\left(\|^{\mathrm{gm}} \mathrm{BMOQ}\right)$
Sol:
Since, a diagonal of a parallelogram divides it into two triangles of equal area
$\therefore \operatorname{area}(\triangle A D C)=\operatorname{area}(\triangle A B C)$
$\Rightarrow \operatorname{area}(\triangle A P O)+\operatorname{area}\left(11^{g m} D L O P\right)+\operatorname{area}(\triangle O L C)$
$\Rightarrow \operatorname{area}(\triangle A O M)+\operatorname{ar}(11 \mathrm{gmDLOP})+\operatorname{area}(\triangle O Q C)$
Since, $A O$ and $O C$ are diagonals of parallelograms AMOP and OQCL respectively.
$\therefore \operatorname{area}(\triangle A P O)=\operatorname{area}(\triangle A M O)$
And, area $(\triangle O L C)=\operatorname{Area}(\triangle O Q C)$
Subtracting (ii) and (iii) from (i), we get
Area $\left(11^{g m}\right.$ DLOP $)=\operatorname{area}\left(11^{g m} B M O Q\right)$
28. In a $\triangle A B C$, if L and M are points on $A B$ and $A C$ respectively such that $L M \| B C$. Prove that:
(i) $\operatorname{ar}(\triangle L C M)=\operatorname{ar}(\triangle L B M)$
(ii) $\operatorname{ar}(\triangle L B C)=\operatorname{ar}(\triangle M B C)$
(iii) $\operatorname{ar}(\triangle A B M)=\operatorname{ar}(\triangle A C L)$
(iv) $\operatorname{ar}(\triangle L O B)=\operatorname{ar}(\triangle M O C)$

Sol:
(i) Clearly Triangles $L M B$ and $L M C$ are on the same base LM and between the same parallels $L M$ and $B C$.

$$
\begin{equation*}
\therefore \operatorname{ar}(\Delta L M B)=\operatorname{ar}(\Delta L M C) \tag{i}
\end{equation*}
$$

(ii) We observe that triangles $L B C$ and $M B C$ area on the same base BC and between the same parallels LM and BC
$\therefore \operatorname{arc} \triangle L B C=\operatorname{ar}(M B C)$
(iii) We have

$$
\begin{aligned}
& \operatorname{ar}(\triangle L M B)=\operatorname{ar}(\triangle L M C) \quad[\text { from }(1)] \\
& \Rightarrow \operatorname{ar}(\triangle A L M)+\operatorname{ar}(\triangle L M B)=\operatorname{ar}(\triangle A L M)+\operatorname{ar}(L M C) \\
& \Rightarrow \operatorname{ar}(\triangle A B M)=\operatorname{ar}(\triangle A C L)
\end{aligned}
$$

(iv) We have

$$
\begin{aligned}
& \operatorname{ar}(\triangle C B C)=\operatorname{ar}(\triangle M B C) \quad \therefore[\text { from }(1)] \\
& \Rightarrow \operatorname{ar}(\triangle L B C)=\operatorname{ar}(\triangle B O C)=a(\triangle M B C)-\operatorname{ar}(B O C) \\
& \Rightarrow \operatorname{ar}(\triangle L O B)=\operatorname{ar}(\triangle M O C)
\end{aligned}
$$

29. In the below fig. D and E are two points on $B C$ such that $B D=D E=E C$. Show that ar $(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{AEC})$.

Sol:

Draw a line through A parallel to BC

Given that, $B D=D E=E C$
We observe that the triangles ABD and AEC are on the equal bases and between the same parallels C and BC . Therefore, Their areas are equal.
Hence, $\operatorname{ar}(A B D)=\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle A C D E)$
30. If below fig. ABC is a right triangle right angled at $\mathrm{A}, \mathrm{BCED}, \mathrm{ACFG}$ and ABMN are squares on the sides $B C, C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that:
(i) $\triangle M B C \cong \triangle A B D$
(ii) $\operatorname{ar}(B Y X D)=2 \operatorname{ar}(\triangle M B C)$
(iii) $\quad \operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\triangle \mathrm{ABMN})$
(iv) $\quad \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
(v) $\quad \operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\triangle \mathrm{FCB})$
(vi) \quad ar $(C Y X E)=\operatorname{ar}(A C F G)$
(vii) $\quad \operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$

Sol:
(i) In $\triangle M B C$ and $\triangle A B D$, we have
$M B=A B$
$B C=B D$
And $\angle M B C=\angle A B D$
[$\because \angle M B C$ and $\angle A B C$ are obtained by adding $\angle A B C$ to a right angle]
So, by SAS congruence criterion, We have

$$
\begin{equation*}
\Delta M B C \cong \triangle A B D \tag{1}
\end{equation*}
$$

$\Rightarrow \operatorname{ar}(\triangle M B C)=\operatorname{ar}(\triangle A B D)$
(ii) Clearly, $\triangle A B C$ and $B Y X D$ are on the same base BD and between the same parallels $A X$ and $B D$
$\therefore \operatorname{Area}(\triangle A B D)=\frac{1}{2} \operatorname{Area}($ rect $B Y X D)$
$\Rightarrow \operatorname{ar}($ rect $\cdot B Y X D)=2 \operatorname{ar}(\triangle A B D)$
$\Rightarrow \operatorname{are}($ rect $\cdot B Y X D)=2 \operatorname{ar}(\triangle M B C)$
$[\because \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle M B C) \quad$......from (i)
(iii) Since triangle $M \cdot B C$ and square $M B A N$ are on the same Base $M B$ and between the same parallels MB and NC

$$
\begin{equation*}
\therefore 2 \operatorname{ar}(\triangle M B C)=\operatorname{ar}(M B A N) \tag{3}
\end{equation*}
$$

From (2) and (3) we have
$\operatorname{ar}(s q \cdot M B A N)=\operatorname{ar}($ rect BYXD $)$.
(iv) In triangles $F C B$ and $A C E$ we have
$F C=A C$
$C B=C F$
And $\angle F C B=\angle A C E$
[$\because \angle F C B$ and $\angle A C E$ are obtained by adding $\angle A C B$ to a right angle]
So, by SAS congruence criterion, we have
$\triangle F C B \cong \triangle A C E$
(v) We have
$\triangle F C B \cong \triangle A C E$
$\Rightarrow \operatorname{ar}(\triangle F C B)=\operatorname{ar}(\triangle E C A)$
Clearly, $\triangle A C E$ and rectangle CYXE are on the same base CE and between the same parallels CE and AX
$\therefore 2 \operatorname{ar}(\triangle A C E)=\operatorname{ar}(C Y X E)$
(vi) Clearly, $\triangle F C B$ and rectangle $F C A G$ are on the same base FC and between the same parallels FC and BG

$$
\begin{equation*}
\therefore 2 \operatorname{ar}(\triangle F C B)=\operatorname{ar}(F C A G) \tag{5}
\end{equation*}
$$

From (4) and (5), we get
Area $(C Y X E)=\operatorname{ar}(A C F G)$
(vii) Applying Pythagoras theorem in $\triangle A C B$, we have

$$
\begin{aligned}
& B C^{2}=A B^{2}+A C^{2} \\
& \Rightarrow B C \times B D=A B \times M B+A C \times F C \\
& \Rightarrow \operatorname{area}(B C E D)=\operatorname{area}(A B M N)+\operatorname{ar}(A C F G)
\end{aligned}
$$

